1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
<HTML>
<HEAD><TITLE>MB01TD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB01TD">MB01TD</A></H2>
<H3>
Computation of A B in B, with A and B upper quasi-triangular matrices with the same structure
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the matrix product A * B, where A and B are upper
quasi-triangular matrices (that is, block upper triangular with
1-by-1 or 2-by-2 diagonal blocks) with the same structure.
The result is returned in the array B.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB01TD( N, A, LDA, B, LDB, DWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
upper quasi-triangular matrix A. The elements below the
subdiagonal are not referenced.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the leading N-by-N part of this array must
contain the upper quasi-triangular matrix B, with the same
structure as matrix A.
On exit, the leading N-by-N part of this array contains
the computed product A * B, with the same structure as
on entry.
The elements below the subdiagonal are not referenced.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (N-1)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the matrices A and B have not the same structure,
and/or A and B are not upper quasi-triangular.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrix product A * B is computed column by column, using
BLAS 2 and BLAS 1 operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
This routine can be used, for instance, for computing powers of
a real Schur form matrix.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB01TD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA, LDB
PARAMETER ( LDA = NMAX, LDB = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX-1 )
* .. Local Scalars ..
INTEGER I, INFO, J, N
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,NMAX), DWORK(LDWORK)
* .. External Subroutines ..
EXTERNAL MB01TD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read in the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,N )
* Compute the matrix product A*B.
CALL MB01TD( N, A, LDA, B, LDB, DWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,N )
20 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (' MB01TD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB01TD = ',I2)
99997 FORMAT (' The matrix product A*B is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB01TD EXAMPLE PROGRAM DATA
5
1. 2. 6. 3. 5.
-2. -1. -1. 0. -2.
0. 0. 1. 5. 1.
0. 0. 0. 0. -4.
0. 0. 0. 20. 4.
5. 5. 1. 5. 1.
-2. 1. 3. 0. -4.
0. 0. 4. 20. 4.
0. 0. 0. 3. 5.
0. 0. 0. 1. -2.
</PRE>
<B>Program Results</B>
<PRE>
MB01TD EXAMPLE PROGRAM RESULTS
The matrix product A*B is
1.0000 7.0000 31.0000 139.0000 22.0000
-8.0000 -11.0000 -9.0000 -32.0000 2.0000
0.0000 0.0000 4.0000 36.0000 27.0000
0.0000 0.0000 0.0000 -4.0000 8.0000
0.0000 0.0000 0.0000 64.0000 92.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|