File: MB01UX.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (184 lines) | stat: -rw-r--r-- 6,040 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
<HTML>
<HEAD><TITLE>MB01UX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB01UX">MB01UX</A></H2>
<H3>
Computation of matrix expressions alpha T A or alpha A T, over A, T quasi-triangular
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute one of the matrix products

    A : = alpha*op( T ) * A, or A : = alpha*A * op( T ),

  where alpha is a scalar, A is an m-by-n matrix, T is a quasi-
  triangular matrix, and op( T ) is one of

     op( T ) = T   or   op( T ) = T',  the transpose of T.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB01UX( SIDE, UPLO, TRANS, M, N, ALPHA, T, LDT, A, LDA,
     $                   DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         SIDE, TRANS, UPLO
      INTEGER           INFO, LDA, LDT, LDWORK, M, N
      DOUBLE PRECISION  ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), T(LDT,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  SIDE    CHARACTER*1
          Specifies whether the upper quasi-triangular matrix H
          appears on the left or right in the matrix product as
          follows:
          = 'L':  A := alpha*op( T ) * A;
          = 'R':  A := alpha*A * op( T ).

  UPLO    CHARACTER*1.
          Specifies whether the matrix T is an upper or lower
          quasi-triangular matrix as follows:
          = 'U':  T is an upper quasi-triangular matrix;
          = 'L':  T is a lower quasi-triangular matrix.

  TRANS   CHARACTER*1
          Specifies the form of op( T ) to be used in the matrix
          multiplication as follows:
          = 'N':  op( T ) = T;
          = 'T':  op( T ) = T';
          = 'C':  op( T ) = T'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows of the matrix A.  M &gt;= 0.

  N       (input) INTEGER
          The number of columns of the matrix A.  N &gt;= 0.

  ALPHA   (input) DOUBLE PRECISION
          The scalar alpha. When alpha is zero then T is not
          referenced and A need not be set before entry.

  T       (input) DOUBLE PRECISION array, dimension (LDT,k)
          where k is M when SIDE = 'L' and is N when SIDE = 'R'.
          On entry with UPLO = 'U', the leading k-by-k upper
          Hessenberg part of this array must contain the upper
          quasi-triangular matrix T. The elements below the
          subdiagonal are not referenced.
          On entry with UPLO = 'L', the leading k-by-k lower
          Hessenberg part of this array must contain the lower
          quasi-triangular matrix T. The elements above the
          supdiagonal are not referenced.

  LDT     INTEGER
          The leading dimension of the array T.  LDT &gt;= max(1,k),
          where k is M when SIDE = 'L' and is N when SIDE = 'R'.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading M-by-N part of this array must
          contain the matrix A.
          On exit, the leading M-by-N part of this array contains
          the computed product.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,M).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0 and ALPHA&lt;&gt;0,  DWORK(1)  returns the
          optimal value of LDWORK.
          On exit, if  INFO = -12,  DWORK(1)  returns the minimum
          value of LDWORK.
          This array is not referenced when alpha = 0.

  LDWORK  The length of the array DWORK.
          LDWORK &gt;= 1,       if alpha =  0 or MIN(M,N) = 0;
          LDWORK &gt;= 2*(M-1), if SIDE  = 'L';
          LDWORK &gt;= 2*(N-1), if SIDE  = 'R'.
          For maximal efficiency LDWORK should be at least
          NOFF*N + M - 1,    if SIDE  = 'L';
          NOFF*M + N - 1,    if SIDE  = 'R';
          where NOFF is the number of nonzero elements on the
          subdiagonal (if UPLO = 'U') or supdiagonal (if UPLO = 'L')
          of T.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The technique used in this routine is similiar to the technique
  used in the SLICOT [1] subroutine MB01UW developed by Vasile Sima.
  The required matrix product is computed in two steps. In the first
  step, the triangle of T specified by UPLO is used; in the second
  step, the contribution of the sub-/supdiagonal is added. If the
  workspace can accommodate parts of A, a fast BLAS 3 DTRMM
  operation is used in the first step.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
      Varga, A.
      SLICOT - A subroutine library in systems and control theory.
      In: Applied and computational control, signals, and circuits,
      Vol. 1, pp. 499-539, Birkhauser, Boston, 1999.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>