File: MB01WD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (190 lines) | stat: -rw-r--r-- 6,315 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
<HTML>
<HEAD><TITLE>MB01WD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB01WD">MB01WD</A></H2>
<H3>
Residuals of Lyapunov or Stein equations for Cholesky factored solutions
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the matrix formula
  _
  R = alpha*( op( A )'*op( T )'*op( T ) + op( T )'*op( T )*op( A ) )
      + beta*R,                                                  (1)

  if DICO = 'C', or
  _
  R = alpha*( op( A )'*op( T )'*op( T )*op( A ) -  op( T )'*op( T ))
      + beta*R,                                                  (2)
                                                          _
  if DICO = 'D', where alpha and beta are scalars, R, and R are
  symmetric matrices, T is a triangular matrix, A is a general or
  Hessenberg matrix, and op( M ) is one of

     op( M ) = M   or   op( M ) = M'.

  The result is overwritten on R.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB01WD( DICO, UPLO, TRANS, HESS, N, ALPHA, BETA, R,
     $                   LDR, A, LDA, T, LDT, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO, HESS, TRANS, UPLO
      INTEGER           INFO, LDA, LDR, LDT, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), R(LDR,*), T(LDT,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DICO    CHARACTER*1
          Specifies the formula to be evaluated, as follows:
          = 'C':  formula (1), "continuous-time" case;
          = 'D':  formula (2), "discrete-time" case.

  UPLO    CHARACTER*1
          Specifies which triangles of the symmetric matrix R and
          triangular matrix T are given, as follows:
          = 'U':  the upper triangular parts of R and T are given;
          = 'L':  the lower triangular parts of R and T are given;

  TRANS   CHARACTER*1
          Specifies the form of op( M ) to be used, as follows:
          = 'N':  op( M ) = M;
          = 'T':  op( M ) = M';
          = 'C':  op( M ) = M'.

  HESS    CHARACTER*1
          Specifies the form of the matrix A, as follows:
          = 'F':  matrix A is full;
          = 'H':  matrix A is Hessenberg (or Schur), either upper
                  (if UPLO = 'U'), or lower (if UPLO = 'L').

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrices R, A, and T.  N &gt;= 0.

  ALPHA   (input) DOUBLE PRECISION
          The scalar alpha. When alpha is zero then the arrays A
          and T are not referenced.

  BETA    (input) DOUBLE PRECISION
          The scalar beta. When beta is zero then the array R need
          not be set before entry.

  R       (input/output) DOUBLE PRECISION array, dimension (LDR,N)
          On entry with UPLO = 'U', the leading N-by-N upper
          triangular part of this array must contain the upper
          triangular part of the symmetric matrix R.
          On entry with UPLO = 'L', the leading N-by-N lower
          triangular part of this array must contain the lower
          triangular part of the symmetric matrix R.
          On exit, the leading N-by-N upper triangular part (if
          UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
          this array contains the corresponding triangular part of
                              _
          the computed matrix R.

  LDR     INTEGER
          The leading dimension of array R.  LDR &gt;= MAX(1,N).

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A. If HESS = 'H' the elements below the
          first subdiagonal, if UPLO = 'U', or above the first
          superdiagonal, if UPLO = 'L', need not be set to zero,
          and are not referenced if DICO = 'D'.
          On exit, the leading N-by-N part of this array contains
          the following matrix product
             alpha*T'*T*A, if TRANS = 'N', or
             alpha*A*T*T', otherwise,
          if DICO = 'C', or
             T*A, if TRANS = 'N', or
             A*T, otherwise,
          if DICO = 'D' (and in this case, these products have a
          Hessenberg form, if HESS = 'H').

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  T       (input) DOUBLE PRECISION array, dimension (LDT,N)
          If UPLO = 'U', the leading N-by-N upper triangular part of
          this array must contain the upper triangular matrix T and
          the strictly lower triangular part need not be set to zero
          (and it is not referenced).
          If UPLO = 'L', the leading N-by-N lower triangular part of
          this array must contain the lower triangular matrix T and
          the strictly upper triangular part need not be set to zero
          (and it is not referenced).

  LDT     INTEGER
          The leading dimension of array T.  LDT &gt;= MAX(1,N).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -k, the k-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The matrix expression (1) or (2) is efficiently evaluated taking
  the structure into account. BLAS 3 operations (DTRMM, DSYRK and
  their specializations) are used throughout.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  If A is a full matrix, the algorithm requires approximately
   3
  N  operations, if DICO = 'C';
         3
  7/6 x N  operations, if DICO = 'D'.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>