File: MB01YD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (185 lines) | stat: -rw-r--r-- 6,292 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
<HTML>
<HEAD><TITLE>MB01YD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB01YD">MB01YD</A></H2>
<H3>
Symmetric rank k operation C := alpha op( A ) op( A )' + beta C, C symmetric
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To perform the symmetric rank k operations

     C := alpha*op( A )*op( A )' + beta*C,

  where alpha and beta are scalars, C is an n-by-n symmetric matrix,
  op( A ) is an n-by-k matrix, and op( A ) is one of

     op( A ) = A   or   op( A ) = A'.

  The matrix A has l nonzero codiagonals, either upper or lower.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB01YD( UPLO, TRANS, N, K, L, ALPHA, BETA, A, LDA, C,
     $                   LDC, INFO )
C     .. Scalar Arguments ..
      CHARACTER          TRANS, UPLO
      INTEGER            INFO, LDA, LDC, K, L, N
      DOUBLE PRECISION   ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  UPLO    CHARACTER*1
          Specifies which triangle of the symmetric matrix C
          is given and computed, as follows:
          = 'U':  the upper triangular part is given/computed;
          = 'L':  the lower triangular part is given/computed.
          UPLO also defines the pattern of the matrix A (see below).

  TRANS   CHARACTER*1
          Specifies the form of op( A ) to be used, as follows:
          = 'N':  op( A ) = A;
          = 'T':  op( A ) = A';
          = 'C':  op( A ) = A'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix C.  N &gt;= 0.

  K       (input) INTEGER
          The number of columns of the matrix op( A ).  K &gt;= 0.

  L       (input) INTEGER
          If UPLO = 'U', matrix A has L nonzero subdiagonals.
          If UPLO = 'L', matrix A has L nonzero superdiagonals.
          MAX(0,NR-1) &gt;= L &gt;= 0, if UPLO = 'U',
          MAX(0,NC-1) &gt;= L &gt;= 0, if UPLO = 'L',
          where NR and NC are the numbers of rows and columns of the
          matrix A, respectively.

  ALPHA   (input) DOUBLE PRECISION
          The scalar alpha. When alpha is zero then the array A is
          not referenced.

  BETA    (input) DOUBLE PRECISION
          The scalar beta. When beta is zero then the array C need
          not be set before entry.

  A       (input) DOUBLE PRECISION array, dimension (LDA,NC), where
          NC is K when TRANS = 'N', and is N otherwise.
          If TRANS = 'N', the leading N-by-K part of this array must
          contain the matrix A, otherwise the leading K-by-N part of
          this array must contain the matrix A.
          If UPLO = 'U', only the upper triangular part and the
          first L subdiagonals are referenced, and the remaining
          subdiagonals are assumed to be zero.
          If UPLO = 'L', only the lower triangular part and the
          first L superdiagonals are referenced, and the remaining
          superdiagonals are assumed to be zero.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= max(1,NR),
          where NR = N, if TRANS = 'N', and NR = K, otherwise.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry with UPLO = 'U', the leading N-by-N upper
          triangular part of this array must contain the upper
          triangular part of the symmetric matrix C.
          On entry with UPLO = 'L', the leading N-by-N lower
          triangular part of this array must contain the lower
          triangular part of the symmetric matrix C.
          On exit, the leading N-by-N upper triangular part (if
          UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
          this array contains the corresponding triangular part of
          the updated matrix C.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,N).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The calculations are efficiently performed taking the symmetry
  and structure into account.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  The matrix A may have the following patterns, when n = 7, k = 5,
  and l = 2 are used for illustration:

  UPLO = 'U', TRANS = 'N'         UPLO = 'L', TRANS = 'N'

         [ x x x x x ]                   [ x x x 0 0 ]
         [ x x x x x ]                   [ x x x x 0 ]
         [ x x x x x ]                   [ x x x x x ]
     A = [ 0 x x x x ],              A = [ x x x x x ],
         [ 0 0 x x x ]                   [ x x x x x ]
         [ 0 0 0 x x ]                   [ x x x x x ]
         [ 0 0 0 0 x ]                   [ x x x x x ]

  UPLO = 'U', TRANS = 'T'         UPLO = 'L', TRANS = 'T'

         [ x x x x x x x ]               [ x x x 0 0 0 0 ]
         [ x x x x x x x ]               [ x x x x 0 0 0 ]
     A = [ x x x x x x x ],          A = [ x x x x x 0 0 ].
         [ 0 x x x x x x ]               [ x x x x x x 0 ]
         [ 0 0 x x x x x ]               [ x x x x x x x ]

  If N = K, the matrix A is upper or lower triangular, for L = 0,
  and upper or lower Hessenberg, for L = 1.

  This routine is a specialization of the BLAS 3 routine DSYRK.
  BLAS 1 calls are used when appropriate, instead of in-line code,
  in order to increase the efficiency. If the matrix A is full, or
  its zero triangle has small order, an optimized DSYRK code could
  be faster than MB01YD.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>