File: MB01ZD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (192 lines) | stat: -rw-r--r-- 6,768 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
<HTML>
<HEAD><TITLE>MB01ZD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB01ZD">MB01ZD</A></H2>
<H3>
Computing H := alpha op( T ) H, or H := alpha H op( T ), with H Hessenberg-like, T triangular
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the matrix product

     H := alpha*op( T )*H,   or   H := alpha*H*op( T ),

  where alpha is a scalar, H is an m-by-n upper or lower
  Hessenberg-like matrix (with l nonzero subdiagonals or
  superdiagonals, respectively), T is a unit, or non-unit,
  upper or lower triangular matrix, and op( T ) is one of

     op( T ) = T   or   op( T ) = T'.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB01ZD( SIDE, UPLO, TRANST, DIAG, M, N, L, ALPHA, T,
     $                   LDT, H, LDH, INFO )
C     .. Scalar Arguments ..
      CHARACTER          DIAG, SIDE, TRANST, UPLO
      INTEGER            INFO, L, LDH, LDT, M, N
      DOUBLE PRECISION   ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), T( LDT, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  SIDE    CHARACTER*1
          Specifies whether the triangular matrix T appears on the
          left or right in the matrix product, as follows:
          = 'L':  the product alpha*op( T )*H is computed;
          = 'R':  the product alpha*H*op( T ) is computed.

  UPLO    CHARACTER*1
          Specifies the form of the matrices T and H, as follows:
          = 'U':  the matrix T is upper triangular and the matrix H
                  is upper Hessenberg-like;
          = 'L':  the matrix T is lower triangular and the matrix H
                  is lower Hessenberg-like.

  TRANST  CHARACTER*1
          Specifies the form of op( T ) to be used, as follows:
          = 'N':  op( T ) = T;
          = 'T':  op( T ) = T';
          = 'C':  op( T ) = T'.

  DIAG    CHARACTER*1.
          Specifies whether or not T is unit triangular, as follows:
          = 'U':  the matrix T is assumed to be unit triangular;
          = 'N':  the matrix T is not assumed to be unit triangular.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows of H.  M &gt;= 0.

  N       (input) INTEGER
          The number of columns of H.  N &gt;= 0.

  L       (input) INTEGER
          If UPLO = 'U', matrix H has L nonzero subdiagonals.
          If UPLO = 'L', matrix H has L nonzero superdiagonals.
          MAX(0,M-1) &gt;= L &gt;= 0, if UPLO = 'U';
          MAX(0,N-1) &gt;= L &gt;= 0, if UPLO = 'L'.

  ALPHA   (input) DOUBLE PRECISION
          The scalar alpha. When alpha is zero then T is not
          referenced and H need not be set before entry.

  T       (input) DOUBLE PRECISION array, dimension (LDT,k), where
          k is m when SIDE = 'L' and is n when SIDE = 'R'.
          If UPLO = 'U', the leading k-by-k upper triangular part
          of this array must contain the upper triangular matrix T
          and the strictly lower triangular part is not referenced.
          If UPLO = 'L', the leading k-by-k lower triangular part
          of this array must contain the lower triangular matrix T
          and the strictly upper triangular part is not referenced.
          Note that when DIAG = 'U', the diagonal elements of T are
          not referenced either, but are assumed to be unity.

  LDT     INTEGER
          The leading dimension of array T.
          LDT &gt;= MAX(1,M), if SIDE = 'L';
          LDT &gt;= MAX(1,N), if SIDE = 'R'.

  H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
          On entry, if UPLO = 'U', the leading M-by-N upper
          Hessenberg part of this array must contain the upper
          Hessenberg-like matrix H.
          On entry, if UPLO = 'L', the leading M-by-N lower
          Hessenberg part of this array must contain the lower
          Hessenberg-like matrix H.
          On exit, the leading M-by-N part of this array contains
          the matrix product alpha*op( T )*H, if SIDE = 'L',
          or alpha*H*op( T ), if SIDE = 'R'. If TRANST = 'N', this
          product has the same pattern as the given matrix H;
          the elements below the L-th subdiagonal (if UPLO = 'U'),
          or above the L-th superdiagonal (if UPLO = 'L'), are not
          referenced in this case. If TRANST = 'T', the elements
          below the (N+L)-th row (if UPLO = 'U', SIDE = 'R', and
          M &gt; N+L), or at the right of the (M+L)-th column
          (if UPLO = 'L', SIDE = 'L', and N &gt; M+L), are not set to
          zero nor referenced.

  LDH     INTEGER
          The leading dimension of array H.  LDH &gt;= max(1,M).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The calculations are efficiently performed taking the problem
  structure into account.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  The matrix H may have the following patterns, when m = 7, n = 6,
  and l = 2 are used for illustration:

            UPLO = 'U'                    UPLO = 'L'

         [ x x x x x x ]               [ x x x 0 0 0 ]
         [ x x x x x x ]               [ x x x x 0 0 ]
         [ x x x x x x ]               [ x x x x x 0 ]
     H = [ 0 x x x x x ],          H = [ x x x x x x ].
         [ 0 0 x x x x ]               [ x x x x x x ]
         [ 0 0 0 x x x ]               [ x x x x x x ]
         [ 0 0 0 0 x x ]               [ x x x x x x ]

  The products T*H or H*T have the same pattern as H, but the
  products T'*H or H*T' may be full matrices.

  If m = n, the matrix H is upper or lower triangular, for l = 0,
  and upper or lower Hessenberg, for l = 1.

  This routine is a specialization of the BLAS 3 routine DTRMM.
  BLAS 1 calls are used when appropriate, instead of in-line code,
  in order to increase the efficiency. If the matrix H is full, or
  its zero triangle has small order, an optimized DTRMM code could
  be faster than MB01ZD.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>