File: MB02CD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (337 lines) | stat: -rw-r--r-- 13,036 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
<HTML>
<HEAD><TITLE>MB02CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02CD">MB02CD</A></H2>
<H3>
Cholesky factorization of a positive definite block Toeplitz matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the Cholesky factor and the generator and/or the
  Cholesky factor of the inverse of a symmetric positive definite
  (s.p.d.) block Toeplitz matrix T, defined by either its first
  block row, or its first block column, depending on the routine
  parameter TYPET. Transformation information is stored.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02CD( JOB, TYPET, K, N, T, LDT, G, LDG, R, LDR, L,
     $                   LDL, CS, LCS, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOB, TYPET
      INTEGER           INFO, K, LCS, LDG, LDL, LDR, LDT, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), G(LDG, *), L(LDL,*), R(LDR,*),
     $                  T(LDT,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOB     CHARACTER*1
          Specifies the output of the routine, as follows:
          = 'G':  only computes the generator G of the inverse;
          = 'R':  computes the generator G of the inverse and the
                  Cholesky factor R of T, i.e., if TYPET = 'R',
                  then R'*R = T, and if TYPET = 'C', then R*R' = T;
          = 'L':  computes the generator G and the Cholesky factor L
                  of the inverse, i.e., if TYPET = 'R', then
                  L'*L = inv(T), and if TYPET = 'C', then
                  L*L' = inv(T);
          = 'A':  computes the generator G, the Cholesky factor L
                  of the inverse and the Cholesky factor R of T;
          = 'O':  only computes the Cholesky factor R of T.

  TYPET   CHARACTER*1
          Specifies the type of T, as follows:
          = 'R':  T contains the first block row of an s.p.d. block
                  Toeplitz matrix; if demanded, the Cholesky factors
                  R and L are upper and lower triangular,
                  respectively, and G contains the transposed
                  generator of the inverse;
          = 'C':  T contains the first block column of an s.p.d.
                  block Toeplitz matrix; if demanded, the Cholesky
                  factors R and L are lower and upper triangular,
                  respectively, and G contains the generator of the
                  inverse. This choice results in a column oriented
                  algorithm which is usually faster.
          Note:   in the sequel, the notation x / y means that
                  x corresponds to TYPET = 'R' and y corresponds to
                  TYPET = 'C'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  K       (input)  INTEGER
          The number of rows / columns in T, which should be equal
          to the blocksize.  K &gt;= 0.

  N       (input)  INTEGER
          The number of blocks in T.  N &gt;= 0.

  T       (input/output)  DOUBLE PRECISION array, dimension
          (LDT,N*K) / (LDT,K)
          On entry, the leading K-by-N*K / N*K-by-K part of this
          array must contain the first block row / column of an
          s.p.d. block Toeplitz matrix.
          On exit, if INFO = 0, then the leading K-by-N*K / N*K-by-K
          part of this array contains, in the first K-by-K block,
          the upper / lower Cholesky factor of T(1:K,1:K), and in
          the remaining part, the Householder transformations
          applied during the process.

  LDT     INTEGER
          The leading dimension of the array T.
          LDT &gt;= MAX(1,K),    if TYPET = 'R';
          LDT &gt;= MAX(1,N*K),  if TYPET = 'C'.

  G       (output)  DOUBLE PRECISION array, dimension
          (LDG,N*K) / (LDG,2*K)
          If INFO = 0 and JOB = 'G', 'R', 'L', or 'A', the leading
          2*K-by-N*K / N*K-by-2*K part of this array contains, in
          the first K-by-K block of the second block row / column,
          the lower right block of L (necessary for updating
          factorizations in SLICOT Library routine MB02DD), and
          in the remaining part, the generator of the inverse of T.
          Actually, to obtain a generator one has to set
              G(K+1:2*K, 1:K) = 0,    if TYPET = 'R';
              G(1:K, K+1:2*K) = 0,    if TYPET = 'C'.

  LDG     INTEGER
          The leading dimension of the array G.
          LDG &gt;= MAX(1,2*K),  if TYPET = 'R' and
                                 JOB = 'G', 'R', 'L', or 'A';
          LDG &gt;= MAX(1,N*K),  if TYPET = 'C' and
                                 JOB = 'G', 'R', 'L', or 'A';
          LDG &gt;= 1,           if JOB = 'O'.

  R       (output)  DOUBLE PRECISION array, dimension (LDR,N*K)
          If INFO = 0 and JOB = 'R', 'A', or 'O', then the leading
          N*K-by-N*K part of this array contains the upper / lower
          Cholesky factor of T.
          The elements in the strictly lower / upper triangular part
          are not referenced.

  LDR     INTEGER
          The leading dimension of the array R.
          LDR &gt;= MAX(1,N*K),  if JOB = 'R', 'A', or 'O';
          LDR &gt;= 1,           if JOB = 'G', or 'L'.

  L       (output)  DOUBLE PRECISION array, dimension (LDL,N*K)
          If INFO = 0 and JOB = 'L', or 'A', then the leading
          N*K-by-N*K part of this array contains the lower / upper
          Cholesky factor of the inverse of T.
          The elements in the strictly upper / lower triangular part
          are not referenced.

  LDL     INTEGER
          The leading dimension of the array L.
          LDL &gt;= MAX(1,N*K),  if JOB = 'L', or 'A';
          LDL &gt;= 1,           if JOB = 'G', 'R', or 'O'.

  CS      (output)  DOUBLE PRECISION array, dimension (LCS)
          If INFO = 0, then the leading 3*(N-1)*K part of this
          array contains information about the hyperbolic rotations
          and Householder transformations applied during the
          process. This information is needed for updating the
          factorizations in SLICOT Library routine MB02DD.

  LCS     INTEGER
          The length of the array CS.  LCS &gt;= 3*(N-1)*K.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal
          value of LDWORK.
          On exit, if  INFO = -16,  DWORK(1)  returns the minimum
          value of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX(1,(N-1)*K).
          For optimum performance LDWORK should be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the reduction algorithm failed. The Toeplitz matrix
                associated with T is not (numerically) positive
                definite.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Householder transformations and modified hyperbolic rotations
  are used in the Schur algorithm [1], [2].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Kailath, T. and Sayed, A.
      Fast Reliable Algorithms for Matrices with Structure.
      SIAM Publications, Philadelphia, 1999.

  [2] Kressner, D. and Van Dooren, P.
      Factorizations and linear system solvers for matrices with
      Toeplitz structure.
      SLICOT Working Note 2000-2, 2000.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The implemented method is numerically stable.
                            3 2
  The algorithm requires 0(K N ) floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB02CD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER        ( ZERO = 0.0D0 )
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          KMAX, NMAX
      PARAMETER        ( KMAX = 20, NMAX = 20 )
      INTEGER          LCS, LDG, LDL, LDR, LDT, LDWORK
      PARAMETER        ( LDG = 2*KMAX, LDL = NMAX*KMAX, LDR = NMAX*KMAX,
     $                   LDT = KMAX, LDWORK = ( NMAX - 1 )*KMAX )
      PARAMETER        ( LCS = 3*LDWORK )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, K, M, N
      CHARACTER        JOB, TYPET
*     .. Local Arrays .. (Dimensioned for TYPET = 'R'.)
      DOUBLE PRECISION CS(LCS), DWORK(LDWORK), G(LDG, NMAX*KMAX),
     $                 L(LDL, NMAX*KMAX), R(LDR, NMAX*KMAX),
     $                 T(LDT, NMAX*KMAX)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         DLASET, MB02CD
*
*     .. Executable Statements ..
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, K, JOB
      TYPET = 'R'
      M = N*K
      IF( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         IF( K.LE.0 .OR. K.GT.KMAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) K
         ELSE
            READ ( NIN, FMT = * ) ( ( T(I,J), J = 1,M ), I = 1,K )
*           Compute the Cholesky factor(s) and/or the generator.
            CALL MB02CD( JOB, TYPET, K, N, T, LDT, G, LDG, R, LDR, L,
     $                   LDL, CS, LCS, DWORK, LDWORK, INFO )
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99998 ) INFO
            ELSE
               IF ( LSAME( JOB, 'G' ) .OR. LSAME( JOB, 'A' ) .OR.
     $              LSAME( JOB, 'L' ) .OR. LSAME( JOB, 'R' ) ) THEN
                  WRITE ( NOUT, FMT = 99997 )
                  CALL DLASET( 'Full', K, K, ZERO, ZERO, G(K+1,1), LDG )
                  DO 10  I = 1, 2*K
                     WRITE ( NOUT, FMT = 99994 ) ( G(I,J), J = 1, M )
   10             CONTINUE
               END IF
               IF ( LSAME( JOB, 'L' ) .OR. LSAME( JOB, 'A' ) ) THEN
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20  I = 1, M
                     WRITE ( NOUT, FMT = 99994 ) ( L(I,J), J = 1, M )
   20             CONTINUE
               END IF
               IF ( LSAME( JOB, 'R' ) .OR. LSAME( JOB, 'A' )
     $                                .OR. LSAME( JOB, 'O' ) ) THEN
                  WRITE ( NOUT, FMT = 99995 )
                  DO 30  I = 1, M
                     WRITE ( NOUT, FMT = 99994 ) ( R(I,J), J = 1, M )
   30             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' MB02CD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02CD = ',I2)
99997 FORMAT (' The generator of the inverse of block Toeplitz matrix',
     $        ' is ')
99996 FORMAT (/' The lower Cholesky factor of the inverse is ')
99995 FORMAT (/' The upper Cholesky factor of block Toeplitz matrix is '
     $       )
99994 FORMAT (20(1X,F8.4))
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' K is out of range.',/' K = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
MB02CD EXAMPLE PROGRAM DATA
  3    2     A
  3.0000    1.0000    0.1000    0.1000    0.2000    0.0500
  1.0000    4.0000    0.4000    0.1000    0.0400    0.2000
</PRE>
<B>Program Results</B>
<PRE>
 MB02CD EXAMPLE PROGRAM RESULTS

 The generator of the inverse of block Toeplitz matrix is 
  -0.2355   0.5231  -0.0642   0.0077   0.0187  -0.0265
  -0.5568  -0.0568   0.0229   0.0060   0.0363   0.0000
   0.0000   0.0000  -0.0387   0.0052   0.0003  -0.0575
   0.0000   0.0000   0.0119  -0.0265  -0.0110   0.0076

 The lower Cholesky factor of the inverse is 
   0.5774   0.0000   0.0000   0.0000   0.0000   0.0000
  -0.1741   0.5222   0.0000   0.0000   0.0000   0.0000
   0.0000  -0.0581   0.5812   0.0000   0.0000   0.0000
  -0.0142   0.0080  -0.1747   0.5224   0.0000   0.0000
  -0.0387   0.0052   0.0003  -0.0575   0.5825   0.0000
   0.0119  -0.0265  -0.0110   0.0076  -0.1754   0.5231

 The upper Cholesky factor of block Toeplitz matrix is 
   1.7321   0.5774   0.0577   0.0577   0.1155   0.0289
   0.0000   1.9149   0.1915   0.0348  -0.0139   0.0957
   0.0000   0.0000   1.7205   0.5754   0.0558   0.0465
   0.0000   0.0000   0.0000   1.9142   0.1890   0.0357
   0.0000   0.0000   0.0000   0.0000   1.7169   0.5759
   0.0000   0.0000   0.0000   0.0000   0.0000   1.9118
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>