1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
<HTML>
<HEAD><TITLE>MB02ED - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02ED">MB02ED</A></H2>
<H3>
Solution of T X = B or X T = B with a positive definite block Toeplitz matrix T
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve a system of linear equations T*X = B or X*T = B with
a symmetric positive definite (s.p.d.) block Toeplitz matrix T.
T is defined either by its first block row or its first block
column, depending on the parameter TYPET.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02ED( TYPET, K, N, NRHS, T, LDT, B, LDB, DWORK,
$ LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER TYPET
INTEGER INFO, K, LDB, LDT, LDWORK, N, NRHS
C .. Array Arguments ..
DOUBLE PRECISION B(LDB,*), DWORK(*), T(LDT,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TYPET CHARACTER*1
Specifies the type of T, as follows:
= 'R': T contains the first block row of an s.p.d. block
Toeplitz matrix, and the system X*T = B is solved;
= 'C': T contains the first block column of an s.p.d.
block Toeplitz matrix, and the system T*X = B is
solved.
Note: in the sequel, the notation x / y means that
x corresponds to TYPET = 'R' and y corresponds to
TYPET = 'C'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
K (input) INTEGER
The number of rows / columns in T, which should be equal
to the blocksize. K >= 0.
N (input) INTEGER
The number of blocks in T. N >= 0.
NRHS (input) INTEGER
The number of right hand sides. NRHS >= 0.
T (input/output) DOUBLE PRECISION array, dimension
(LDT,N*K) / (LDT,K)
On entry, the leading K-by-N*K / N*K-by-K part of this
array must contain the first block row / column of an
s.p.d. block Toeplitz matrix.
On exit, if INFO = 0 and NRHS > 0, then the leading
K-by-N*K / N*K-by-K part of this array contains the last
row / column of the Cholesky factor of inv(T).
LDT INTEGER
The leading dimension of the array T.
LDT >= MAX(1,K), if TYPET = 'R';
LDT >= MAX(1,N*K), if TYPET = 'C'.
B (input/output) DOUBLE PRECISION array, dimension
(LDB,N*K) / (LDB,NRHS)
On entry, the leading NRHS-by-N*K / N*K-by-NRHS part of
this array must contain the right hand side matrix B.
On exit, the leading NRHS-by-N*K / N*K-by-NRHS part of
this array contains the solution matrix X.
LDB INTEGER
The leading dimension of the array B.
LDB >= MAX(1,NRHS), if TYPET = 'R';
LDB >= MAX(1,N*K), if TYPET = 'C'.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK.
On exit, if INFO = -10, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(1,N*K*K+(N+2)*K).
For optimum performance LDWORK should be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the reduction algorithm failed. The Toeplitz matrix
associated with T is not (numerically) positive
definite.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Householder transformations, modified hyperbolic rotations and
block Gaussian eliminations are used in the Schur algorithm [1],
[2].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kailath, T. and Sayed, A.
Fast Reliable Algorithms for Matrices with Structure.
SIAM Publications, Philadelphia, 1999.
[2] Kressner, D. and Van Dooren, P.
Factorizations and linear system solvers for matrices with
Toeplitz structure.
SLICOT Working Note 2000-2, 2000.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented method is numerically equivalent with forming
the Cholesky factor R and the inverse Cholesky factor of T, using
the generalized Schur algorithm, and solving the systems of
equations R*X = L*B or X*R = B*L by a blocked backward
substitution algorithm.
3 2 2 2
The algorithm requires 0(K N + K N NRHS) floating point
operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB02ED EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER KMAX, NMAX
PARAMETER ( KMAX = 20, NMAX = 20 )
INTEGER LDB, LDT, LDWORK
PARAMETER ( LDB = KMAX*NMAX, LDT = KMAX*NMAX,
$ LDWORK = NMAX*KMAX*KMAX + ( NMAX+2 )*KMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, K, M, N, NRHS
CHARACTER TYPET
* .. Local Arrays ..
* The arrays B and T are dimensioned for both TYPET = 'R' and
* TYPET = 'C'.
* NRHS is assumed to be not larger than KMAX*NMAX.
DOUBLE PRECISION B(LDB, KMAX*NMAX), DWORK(LDWORK),
$ T(LDT, KMAX*NMAX)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL MB02ED
*
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, K, NRHS, TYPET
M = N*K
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE
IF ( K.LE.0 .OR. K.GT.KMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) K
ELSE
IF ( NRHS.LE.0 .OR. NRHS.GT.KMAX*NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) NRHS
ELSE
IF ( LSAME( TYPET, 'R' ) ) THEN
READ ( NIN, FMT = * ) ( ( T(I,J), J = 1,M ), I = 1,K )
ELSE
READ ( NIN, FMT = * ) ( ( T(I,J), J = 1,K ), I = 1,M )
END IF
IF ( LSAME( TYPET, 'R' ) ) THEN
READ (NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,
$ NRHS )
ELSE
READ (NIN, FMT = * ) ( ( B(I,J), J = 1,NRHS ), I = 1,
$ M )
END IF
* Compute the solution of X T = B or T X = B.
CALL MB02ED( TYPET, K, N, NRHS, T, LDT, B, LDB, DWORK,
$ LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( LSAME( TYPET, 'R' ) ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, NRHS
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, M )
10 CONTINUE
ELSE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, M
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,
$ NRHS )
20 CONTINUE
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' MB02ED EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02ED = ',I2)
99997 FORMAT (' The solution of X*T = B is ')
99996 FORMAT (' The solution of T*X = B is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' K is out of range.',/' K = ',I5)
99992 FORMAT (/' NRHS is out of range.',/' NRHS = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB02ED EXAMPLE PROGRAM DATA
3 3 2 C
3.0000 1.0000 0.2000
1.0000 4.0000 0.4000
0.2000 0.4000 5.0000
0.1000 0.1000 0.2000
0.2000 0.0400 0.0300
0.0500 0.2000 0.1000
0.1000 0.0300 0.1000
0.0400 0.0200 0.2000
0.0100 0.0300 0.0200
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
</PRE>
<B>Program Results</B>
<PRE>
MB02ED EXAMPLE PROGRAM RESULTS
The solution of T*X = B is
0.2408 0.4816
0.1558 0.3116
0.1534 0.3068
0.2302 0.4603
0.1467 0.2934
0.1537 0.3075
0.2349 0.4698
0.1498 0.2995
0.1653 0.3307
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|