File: MB02HD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (332 lines) | stat: -rw-r--r-- 12,422 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
<HTML>
<HEAD><TITLE>MB02HD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02HD">MB02HD</A></H2>
<H3>
Cholesky factorization of the matrix T' T, with T a banded block Toeplitz matrix of full rank
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute, for a banded K*M-by-L*N block Toeplitz matrix T with
  block size (K,L), specified by the nonzero blocks of its first
  block column TC and row TR, a LOWER triangular matrix R (in band
  storage scheme) such that
                       T          T
                      T  T  =  R R .                             (1)

  It is assumed that the first MIN(M*K, N*L) columns of T are
  linearly independent.

  By subsequent calls of this routine, the matrix R can be computed
  block column by block column.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02HD( TRIU, K, L, M, ML, N, NU, P, S, TC, LDTC, TR,
     $                   LDTR, RB, LDRB, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         TRIU
      INTEGER           INFO, K, L, LDRB, LDTC, LDTR, LDWORK, M, ML, N,
     $                  NU, P, S
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(LDWORK), RB(LDRB,*), TC(LDTC,*),
     $                  TR(LDTR,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  TRIU    CHARACTER*1
          Specifies the structure, if any, of the last blocks in TC
          and TR, as follows:
          = 'N':  TC and TR have no special structure;
          = 'T':  TC and TR are upper and lower triangular,
                  respectively. Depending on the block sizes, two
                  different shapes of the last blocks in TC and TR
                  are possible, as illustrated below:

                  1)    TC       TR     2)   TC         TR

                       x x x    x 0 0      x x x x    x 0 0 0
                       0 x x    x x 0      0 x x x    x x 0 0
                       0 0 x    x x x      0 0 x x    x x x 0
                       0 0 0    x x x

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  K       (input) INTEGER
          The number of rows in the blocks of T.  K &gt;= 0.

  L       (input) INTEGER
          The number of columns in the blocks of T.  L &gt;= 0.

  M       (input) INTEGER
          The number of blocks in the first block column of T.
          M &gt;= 1.

  ML      (input) INTEGER
          The lower block bandwidth, i.e., ML + 1 is the number of
          nonzero blocks in the first block column of T.
          0 &lt;= ML &lt; M and (ML + 1)*K &gt;= L and
          if ( M*K &lt;= N*L ),  ML &gt;= M - INT( ( M*K - 1 )/L ) - 1;
                              ML &gt;= M - INT( M*K/L ) or
                              MOD( M*K, L ) &gt;= K;
          if ( M*K &gt;= N*L ),  ML*K &gt;= N*( L - K ).

  N       (input) INTEGER
          The number of blocks in the first block row of T.
          N &gt;= 1.

  NU      (input) INTEGER
          The upper block bandwidth, i.e., NU + 1 is the number of
          nonzero blocks in the first block row of T.
          If TRIU = 'N',   0 &lt;= NU &lt; N and
                           (M + NU)*L &gt;= MIN( M*K, N*L );
          if TRIU = 'T',   MAX(1-ML,0) &lt;= NU &lt; N and
                           (M + NU)*L &gt;= MIN( M*K, N*L ).

  P       (input)  INTEGER
          The number of previously computed block columns of R.
          P*L &lt; MIN( M*K,N*L ) + L and P &gt;= 0.

  S       (input)  INTEGER
          The number of block columns of R to compute.
          (P+S)*L &lt; MIN( M*K,N*L ) + L and S &gt;= 0.

  TC      (input)  DOUBLE PRECISION array, dimension (LDTC,L)
          On entry, if P = 0, the leading (ML+1)*K-by-L part of this
          array must contain the nonzero blocks in the first block
          column of T.

  LDTC    INTEGER
          The leading dimension of the array TC.
          LDTC &gt;= MAX(1,(ML+1)*K),  if P = 0.

  TR      (input)  DOUBLE PRECISION array, dimension (LDTR,NU*L)
          On entry, if P = 0, the leading K-by-NU*L part of this
          array must contain the 2nd to the (NU+1)-st blocks of
          the first block row of T.

  LDTR    INTEGER
          The leading dimension of the array TR.
          LDTR &gt;= MAX(1,K),  if P = 0.

  RB      (output)  DOUBLE PRECISION array, dimension
          (LDRB,MIN( S*L,MIN( M*K,N*L )-P*L ))
          On exit, if INFO = 0 and TRIU = 'N', the leading
          MIN( ML+NU+1,N )*L-by-MIN( S*L,MIN( M*K,N*L )-P*L ) part
          of this array contains the (P+1)-th to (P+S)-th block
          column of the lower R factor (1) in band storage format.
          On exit, if INFO = 0 and TRIU = 'T', the leading
          MIN( (ML+NU)*L+1,N*L )-by-MIN( S*L,MIN( M*K,N*L )-P*L )
          part of this array contains the (P+1)-th to (P+S)-th block
          column of the lower R factor (1) in band storage format.
          For further details regarding the band storage scheme see
          the documentation of the LAPACK routine DPBTF2.

  LDRB    INTEGER
          The leading dimension of the array RB.
          LDRB &gt;= MAX( MIN( ML+NU+1,N )*L,1 ),      if TRIU = 'N';
          LDRB &gt;= MAX( MIN( (ML+NU)*L+1,N*L ),1 ),  if TRIU = 'T'.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal
          value of LDWORK.
          On exit, if  INFO = -17,  DWORK(1)  returns the minimum
          value of LDWORK.
          The first 1 + 2*MIN( ML+NU+1,N )*L*(K+L) elements of DWORK
          should be preserved during successive calls of the routine.

  LDWORK  INTEGER
          The length of the array DWORK.
          Let x = MIN( ML+NU+1,N ), then
          LDWORK &gt;= 1 + MAX( x*L*L + (2*NU+1)*L*K,
                             2*x*L*(K+L) + (6+x)*L ),  if P = 0;
          LDWORK &gt;= 1 + 2*x*L*(K+L) + (6+x)*L,         if P &gt; 0.
          For optimum performance LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the full rank condition for the first MIN(M*K, N*L)
                columns of T is (numerically) violated.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Householder transformations and modified hyperbolic rotations
  are used in the Schur algorithm [1], [2].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Kailath, T. and Sayed, A.
      Fast Reliable Algorithms for Matrices with Structure.
      SIAM Publications, Philadelphia, 1999.

  [2] Kressner, D. and Van Dooren, P.
      Factorizations and linear system solvers for matrices with
      Toeplitz structure.
      SLICOT Working Note 2000-2, 2000.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The implemented method yields a factor R which has comparable
  accuracy with the Cholesky factor of T^T * T.
  The algorithm requires
            2                                  2
        O( L *K*N*( ML + NU ) + N*( ML + NU )*L *( L + K ) )

  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB02HD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          KMAX, LMAX, MMAX, MLMAX, NMAX, NUMAX
      PARAMETER        ( KMAX = 20, LMAX  = 20, MMAX = 20, MLMAX = 10,
     $                   NMAX = 20, NUMAX = 10 )
      INTEGER          LDRB, LDTC, LDTR, LDWORK
      PARAMETER        ( LDRB = ( MLMAX + NUMAX + 1 )*LMAX,
     $                   LDTC = ( MLMAX + 1 )*KMAX, LDTR = KMAX )
      PARAMETER        ( LDWORK = LDRB*LMAX + ( 2*NUMAX + 1 )*LMAX*KMAX
     $                            + 2*LDRB*( KMAX + LMAX ) + LDRB
     $                            + 6*LMAX )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, K, L, LENR, M, ML, N, NU, S
      CHARACTER        TRIU
*     .. Local Arrays ..
      DOUBLE PRECISION DWORK(LDWORK), RB(LDRB,NMAX*LMAX),
     $                 TC(LDTC,LMAX), TR(LDTR,NMAX*LMAX)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         MB02HD
*     .. Intrinsic Functions ..
      INTRINSIC        MIN
*
*     .. Executable Statements ..
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) K, L, M, ML, N, NU, TRIU
      IF( K.LT.0 .OR. K.GT.KMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) K
      ELSE IF( L.LT.0 .OR. L.GT.LMAX ) THEN
         WRITE ( NOUT, FMT = 99991 ) L
      ELSE IF( M.LE.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) M
      ELSE IF( ML.LT.0 .OR. ML.GT.MLMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) ML
      ELSE IF( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99994 ) N
      ELSE IF( NU.LT.0 .OR. NU.GT.NUMAX ) THEN
         WRITE ( NOUT, FMT = 99995 ) NU
      ELSE
         READ ( NIN, FMT = * ) ( ( TC(I,J), J = 1,L ), I = 1,(ML+1)*K )
         READ ( NIN, FMT = * ) ( ( TR(I,J), J = 1,NU*L ), I = 1,K )
         S = ( MIN( M*K, N*L ) + L - 1 ) / L
*        Compute the banded R factor.
         CALL MB02HD( TRIU, K, L, M, ML, N, NU, 0, S, TC, LDTC, TR,
     $                LDTR, RB, LDRB, DWORK, LDWORK, INFO )
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            WRITE ( NOUT, FMT = 99997 )
            LENR = ( ML + NU + 1 )*L
            IF ( LSAME( TRIU, 'T' ) )  LENR = ( ML + NU )*L + 1
            LENR = MIN( LENR, N*L )
            DO 10  I = 1, LENR
               WRITE ( NOUT, FMT = 99996 ) ( RB(I,J), J = 1,
     $                                       MIN( N*L, M*K ) )
   10       CONTINUE
         END IF
      END IF
      STOP
*
99999 FORMAT (' MB02HD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02HD = ',I2)
99997 FORMAT (/' The lower triangular factor R in banded storage ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' NU is out of range.',/' NU = ',I5)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' ML is out of range.',/' ML = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' L is out of range.',/' L = ',I5)
99990 FORMAT (/' K is out of range.',/' K = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
MB02HD EXAMPLE PROGRAM DATA
   2  2  6  2  5   1  N
     4.0     4.0
     1.0     3.0
     2.0     1.0
     2.0     2.0
     4.0     4.0
     3.0     4.0
     1.0     3.0   
     2.0     1.0     
</PRE>
<B>Program Results</B>
<PRE>
 MB02HD EXAMPLE PROGRAM RESULTS


 The lower triangular factor R in banded storage 
  -7.0711  -2.4125   6.0822   2.9967   5.9732   2.8593   5.8497   2.7914   2.7298   1.9557
  -7.4953  -0.0829   5.8986  -0.5571   5.5329   0.2059   5.6797   0.3414   0.9565   0.0000
  -4.2426   0.9202   2.4747  -1.6425   2.9472  -1.0052   2.4396  -0.7785   0.0000   0.0000
  -5.2326   0.6218   2.8391  -0.0820   3.2670   0.6327   2.7067   0.0000   0.0000   0.0000
  -3.5355   0.8207   3.1160  -0.4451   3.5758   0.5701   0.0000   0.0000   0.0000   0.0000
  -4.6669  -0.5803   3.9454   0.7682   4.5481   0.0000   0.0000   0.0000   0.0000   0.0000
  -1.4142  -0.0415   1.6441   0.4848   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  -2.1213   0.0000   2.4662   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>