1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
<HTML>
<HEAD><TITLE>MB02ID - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02ID">MB02ID</A></H2>
<H3>
Solution of over- or underdetermined linear systems with a full rank block Toeplitz matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve the overdetermined or underdetermined real linear systems
involving an M*K-by-N*L block Toeplitz matrix T that is specified
by its first block column and row. It is assumed that T has full
rank.
The following options are provided:
1. If JOB = 'O' or JOB = 'A' : find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - T*X ||. (1)
2. If JOB = 'U' or JOB = 'A' : find the minimum norm solution of
the undetermined system
T
T * X = C. (2)
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02ID( JOB, K, L, M, N, RB, RC, TC, LDTC, TR, LDTR, B,
$ LDB, C, LDC, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, K, L, LDB, LDC, LDTC, LDTR, LDWORK, M, N,
$ RB, RC
C .. Array Arguments ..
DOUBLE PRECISION B(LDB,*), C(LDC,*), DWORK(LDWORK), TC(LDTC,*),
$ TR(LDTR,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies the problem to be solved as follows
= 'O': solve the overdetermined system (1);
= 'U': solve the underdetermined system (2);
= 'A': solve (1) and (2).
</PRE>
<B>Input/Output Parameters</B>
<PRE>
K (input) INTEGER
The number of rows in the blocks of T. K >= 0.
L (input) INTEGER
The number of columns in the blocks of T. L >= 0.
M (input) INTEGER
The number of blocks in the first block column of T.
M >= 0.
N (input) INTEGER
The number of blocks in the first block row of T.
0 <= N <= M*K / L.
RB (input) INTEGER
If JOB = 'O' or 'A', the number of columns in B. RB >= 0.
RC (input) INTEGER
If JOB = 'U' or 'A', the number of columns in C. RC >= 0.
TC (input) DOUBLE PRECISION array, dimension (LDTC,L)
On entry, the leading M*K-by-L part of this array must
contain the first block column of T.
LDTC INTEGER
The leading dimension of the array TC. LDTC >= MAX(1,M*K)
TR (input) DOUBLE PRECISION array, dimension (LDTR,(N-1)*L)
On entry, the leading K-by-(N-1)*L part of this array must
contain the 2nd to the N-th blocks of the first block row
of T.
LDTR INTEGER
The leading dimension of the array TR. LDTR >= MAX(1,K).
B (input/output) DOUBLE PRECISION array, dimension (LDB,RB)
On entry, if JOB = 'O' or JOB = 'A', the leading M*K-by-RB
part of this array must contain the right hand side
matrix B of the overdetermined system (1).
On exit, if JOB = 'O' or JOB = 'A', the leading N*L-by-RB
part of this array contains the solution of the
overdetermined system (1).
This array is not referenced if JOB = 'U'.
LDB INTEGER
The leading dimension of the array B.
LDB >= MAX(1,M*K), if JOB = 'O' or JOB = 'A';
LDB >= 1, if JOB = 'U'.
C (input) DOUBLE PRECISION array, dimension (LDC,RC)
On entry, if JOB = 'U' or JOB = 'A', the leading N*L-by-RC
part of this array must contain the right hand side
matrix C of the underdetermined system (2).
On exit, if JOB = 'U' or JOB = 'A', the leading M*K-by-RC
part of this array contains the solution of the
underdetermined system (2).
This array is not referenced if JOB = 'O'.
LDC INTEGER
The leading dimension of the array C.
LDB >= 1, if JOB = 'O';
LDB >= MAX(1,M*K), if JOB = 'U' or JOB = 'A'.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK.
On exit, if INFO = -17, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
Let x = MAX( 2*N*L*(L+K) + (6+N)*L,(N*L+M*K+1)*L + M*K )
and y = N*M*K*L + N*L, then
if MIN( M,N ) = 1 and JOB = 'O',
LDWORK >= MAX( y + MAX( M*K,RB ),1 );
if MIN( M,N ) = 1 and JOB = 'U',
LDWORK >= MAX( y + MAX( M*K,RC ),1 );
if MIN( M,N ) = 1 and JOB = 'A',
LDWORK >= MAX( y +MAX( M*K,MAX( RB,RC ),1 );
if MIN( M,N ) > 1 and JOB = 'O',
LDWORK >= MAX( x,N*L*RB + 1 );
if MIN( M,N ) > 1 and JOB = 'U',
LDWORK >= MAX( x,N*L*RC + 1 );
if MIN( M,N ) > 1 and JOB = 'A',
LDWORK >= MAX( x,N*L*MAX( RB,RC ) + 1 ).
For optimum performance LDWORK should be larger.
If LDWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the
DWORK array, returns this value as the first entry of
the DWORK array, and no error message related to LDWORK
is issued by XERBLA.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the reduction algorithm failed. The Toeplitz matrix
associated with T is (numerically) not of full rank.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Householder transformations and modified hyperbolic rotations
are used in the Schur algorithm [1], [2].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kailath, T. and Sayed, A.
Fast Reliable Algorithms for Matrices with Structure.
SIAM Publications, Philadelphia, 1999.
[2] Kressner, D. and Van Dooren, P.
Factorizations and linear system solvers for matrices with
Toeplitz structure.
SLICOT Working Note 2000-2, 2000.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires O( L*L*K*(N+M)*log(N+M) + N*N*L*L*(L+K) )
and additionally
if JOB = 'O' or JOB = 'A',
O( (K*L+RB*L+K*RB)*(N+M)*log(N+M) + N*N*L*L*RB );
if JOB = 'U' or JOB = 'A',
O( (K*L+RC*L+K*RC)*(N+M)*log(N+M) + N*N*L*L*RC );
floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB02ID EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER KMAX, LMAX, MMAX, NMAX, RBMAX, RCMAX
PARAMETER ( KMAX = 20, LMAX = 20, MMAX = 20, NMAX = 20,
$ RBMAX = 20, RCMAX = 20 )
INTEGER LDB, LDC, LDTC, LDTR, LDWORK
PARAMETER ( LDB = KMAX*MMAX, LDC = KMAX*MMAX,
$ LDTC = MMAX*KMAX, LDTR = KMAX,
$ LDWORK = 2*NMAX*LMAX*( LMAX + KMAX ) +
$ ( 6 + NMAX )*LMAX +
$ MMAX*KMAX*( LMAX + 1 ) +
$ RBMAX + RCMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, K, L, M, N, RB, RC
CHARACTER JOB
DOUBLE PRECISION B(LDB,RBMAX), C(LDC,RCMAX), DWORK(LDWORK),
$ TC(LDTC,LMAX), TR(LDTR,NMAX*LMAX)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL MB02ID
*
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) K, L, M, N, RB, RC, JOB
IF( K.LE.0 .OR. K.GT.KMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) K
ELSE IF( L.LE.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) L
ELSE IF( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) M
ELSE IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) N
ELSE IF ( ( LSAME( JOB, 'O' ) .OR. LSAME( JOB, 'A' ) )
$ .AND. ( ( RB.LE.0 ) .OR. ( RB.GT.RBMAX ) ) ) THEN
WRITE ( NOUT, FMT = 99990 ) RB
ELSE IF ( ( LSAME( JOB, 'U' ) .OR. LSAME( JOB, 'A' ) )
$ .AND. ( ( RC.LE.0 ) .OR. ( RC.GT.RCMAX ) ) ) THEN
WRITE ( NOUT, FMT = 99989 ) RC
ELSE
READ ( NIN, FMT = * ) ( ( TC(I,J), J = 1,L ), I = 1,M*K )
READ ( NIN, FMT = * ) ( ( TR(I,J), J = 1,(N-1)*L ), I = 1,K )
IF ( LSAME( JOB, 'O' ) .OR. LSAME( JOB, 'A' ) ) THEN
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,RB ), I = 1,M*K )
END IF
IF ( LSAME( JOB, 'U' ) .OR. LSAME( JOB, 'A' ) ) THEN
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,RC ), I = 1,N*L )
END IF
CALL MB02ID( JOB, K, L, M, N, RB, RC, TC, LDTC, TR, LDTR, B,
$ LDB, C, LDC, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( LSAME( JOB, 'O' ) .OR. LSAME( JOB, 'A' ) ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, N*L
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, RB )
10 CONTINUE
END IF
IF ( LSAME( JOB, 'U' ) .OR. LSAME( JOB, 'A' ) ) THEN
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, M*K
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1, RC )
20 CONTINUE
END IF
END IF
END IF
STOP
*
99999 FORMAT (' MB02ID EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02ID = ',I2)
99997 FORMAT (' The least squares solution of T * X = B is ')
99996 FORMAT (' The minimum norm solution of T^T * X = C is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' K is out of range.',/' K = ',I5)
99993 FORMAT (/' L is out of range.',/' L = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' N is out of range.',/' N = ',I5)
99990 FORMAT (/' RB is out of range.',/' RB = ',I5)
99989 FORMAT (/' RC is out of range.',/' RC = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB02ID EXAMPLE PROGRAM DATA
3 2 4 3 1 1 A
5.0 2.0
1.0 2.0
4.0 3.0
4.0 0.0
2.0 2.0
3.0 3.0
5.0 1.0
3.0 3.0
1.0 1.0
2.0 3.0
1.0 3.0
2.0 2.0
1.0 4.0 2.0 3.0
2.0 2.0 2.0 4.0
3.0 1.0 0.0 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
</PRE>
<B>Program Results</B>
<PRE>
MB02ID EXAMPLE PROGRAM RESULTS
The least squares solution of T * X = B is
0.0379
0.1677
0.0485
-0.0038
0.0429
0.1365
The minimum norm solution of T^T * X = C is
0.0509
0.0547
0.0218
0.0008
0.0436
0.0404
0.0031
0.0451
0.0421
0.0243
0.0556
0.0472
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|