1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
<HTML>
<HEAD><TITLE>MB02JX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02JX">MB02JX</A></H2>
<H3>
Low rank QR factorization with column pivoting of a block Toeplitz matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a low rank QR factorization with column pivoting of a
K*M-by-L*N block Toeplitz matrix T with blocks of size (K,L);
specifically,
T
T P = Q R ,
where R is lower trapezoidal, P is a block permutation matrix
and Q^T Q = I. The number of columns in R is equivalent to the
numerical rank of T with respect to the given tolerance TOL1.
Note that the pivoting scheme is local, i.e., only columns
belonging to the same block in T are permuted.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02JX( JOB, K, L, M, N, TC, LDTC, TR, LDTR, RNK, Q,
$ LDQ, R, LDR, JPVT, TOL1, TOL2, DWORK, LDWORK,
$ INFO )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, K, L, LDQ, LDR, LDTC, LDTR, LDWORK, M, N,
$ RNK
DOUBLE PRECISION TOL1, TOL2
C .. Array Arguments ..
DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,*), R(LDR,*), TC(LDTC,*),
$ TR(LDTR,*)
INTEGER JPVT(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies the output of the routine as follows:
= 'Q': computes Q and R;
= 'R': only computes R.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
K (input) INTEGER
The number of rows in one block of T. K >= 0.
L (input) INTEGER
The number of columns in one block of T. L >= 0.
M (input) INTEGER
The number of blocks in one block column of T. M >= 0.
N (input) INTEGER
The number of blocks in one block row of T. N >= 0.
TC (input) DOUBLE PRECISION array, dimension (LDTC, L)
The leading M*K-by-L part of this array must contain
the first block column of T.
LDTC INTEGER
The leading dimension of the array TC.
LDTC >= MAX(1,M*K).
TR (input) DOUBLE PRECISION array, dimension (LDTR,(N-1)*L)
The leading K-by-(N-1)*L part of this array must contain
the first block row of T without the leading K-by-L
block.
LDTR INTEGER
The leading dimension of the array TR. LDTR >= MAX(1,K).
RNK (output) INTEGER
The number of columns in R, which is equivalent to the
numerical rank of T.
Q (output) DOUBLE PRECISION array, dimension (LDQ,RNK)
If JOB = 'Q', then the leading M*K-by-RNK part of this
array contains the factor Q.
If JOB = 'R', then this array is not referenced.
LDQ INTEGER
The leading dimension of the array Q.
LDQ >= MAX(1,M*K), if JOB = 'Q';
LDQ >= 1, if JOB = 'R'.
R (output) DOUBLE PRECISION array, dimension (LDR,RNK)
The leading N*L-by-RNK part of this array contains the
lower trapezoidal factor R.
LDR INTEGER
The leading dimension of the array R.
LDR >= MAX(1,N*L)
JPVT (output) INTEGER array, dimension (MIN(M*K,N*L))
This array records the column pivoting performed.
If JPVT(j) = k, then the j-th column of T*P was
the k-th column of T.
</PRE>
<B>Tolerances</B>
<PRE>
TOL1 DOUBLE PRECISION
If TOL1 >= 0.0, the user supplied diagonal tolerance;
if TOL1 < 0.0, a default diagonal tolerance is used.
TOL2 DOUBLE PRECISION
If TOL2 >= 0.0, the user supplied offdiagonal tolerance;
if TOL2 < 0.0, a default offdiagonal tolerance is used.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK; DWORK(2) and DWORK(3) return the used values
for TOL1 and TOL2, respectively.
On exit, if INFO = -19, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX( 3, ( M*K + ( N - 1 )*L )*( L + 2*K ) + 9*L
+ MAX(M*K,(N-1)*L) ), if JOB = 'Q';
LDWORK >= MAX( 3, ( N - 1 )*L*( L + 2*K + 1 ) + 9*L,
M*K*( L + 1 ) + L ), if JOB = 'R'.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: due to perturbations induced by roundoff errors, or
removal of nearly linearly dependent columns of the
generator, the Schur algorithm encountered a
situation where a diagonal element in the negative
generator is larger in magnitude than the
corresponding diagonal element in the positive
generator (modulo TOL1);
= 2: due to perturbations induced by roundoff errors, or
removal of nearly linearly dependent columns of the
generator, the Schur algorithm encountered a
situation where diagonal elements in the positive
and negative generator are equal in magnitude
(modulo TOL1), but the offdiagonal elements suggest
that these columns are not linearly dependent
(modulo TOL2*ABS(diagonal element)).
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Householder transformations and modified hyperbolic rotations
are used in the Schur algorithm [1], [2].
If, during the process, the hyperbolic norm of a row in the
leading part of the generator is found to be less than or equal
to TOL1, then this row is not reduced. If the difference of the
corresponding columns has a norm less than or equal to TOL2 times
the magnitude of the leading element, then this column is removed
from the generator, as well as from R. Otherwise, the algorithm
breaks down. TOL1 is set to norm(TC)*sqrt(eps) and TOL2 is set
to N*L*sqrt(eps) by default.
If M*K > L, the columns of T are permuted so that the diagonal
elements in one block column of R have decreasing magnitudes.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kailath, T. and Sayed, A.
Fast Reliable Algorithms for Matrices with Structure.
SIAM Publications, Philadelphia, 1999.
[2] Kressner, D. and Van Dooren, P.
Factorizations and linear system solvers for matrices with
Toeplitz structure.
SLICOT Working Note 2000-2, 2000.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires 0(K*RNK*L*M*N) floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB02JX EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER KMAX, LMAX, MMAX, NMAX
PARAMETER ( KMAX = 20, LMAX = 20, MMAX = 20, NMAX = 20 )
INTEGER LDR, LDQ, LDTC, LDTR, LDWORK
PARAMETER ( LDR = NMAX*LMAX, LDQ = MMAX*KMAX,
$ LDTC = MMAX*KMAX, LDTR = KMAX,
$ LDWORK = ( MMAX*KMAX + NMAX*LMAX )
$ *( LMAX + 2*KMAX ) + 5*LMAX
$ + MMAX*KMAX + NMAX*LMAX )
* .. Local Scalars ..
CHARACTER JOB
INTEGER I, INFO, J, K, L, M, N, RNK
DOUBLE PRECISION TOL1, TOL2
* .. Local Arrays ..
INTEGER JPVT(NMAX*LMAX)
DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,NMAX*LMAX),
$ R(LDR,NMAX*LMAX), TC(LDTC,LMAX),
$ TR(LDTR,NMAX*LMAX)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL MB02JX
* .. Intrinsic Functions ..
INTRINSIC MIN
*
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) K, L, M, N, TOL1, TOL2, JOB
IF( K.LE.0 .OR. K.GT.KMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) K
ELSE IF( L.LE.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) L
ELSE IF( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) N
ELSE
READ ( NIN, FMT = * ) ( ( TC(I,J), J = 1,L ), I = 1,M*K )
READ ( NIN, FMT = * ) ( ( TR(I,J), J = 1,( N - 1 )*L ),
$ I = 1,K )
* Compute the required part of the QR factorization.
CALL MB02JX( JOB, K, L, M, N, TC, LDTC, TR, LDTR, RNK, Q, LDQ,
$ R, LDR, JPVT, TOL1, TOL2, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99994 ) RNK
IF ( LSAME( JOB, 'Q' ) ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, M*K
WRITE ( NOUT, FMT = 99993 ) ( Q(I,J), J = 1, RNK )
10 CONTINUE
END IF
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, N*L
WRITE ( NOUT, FMT = 99993 ) ( R(I,J), J = 1, RNK )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
WRITE ( NOUT, FMT = 99992 ) ( JPVT(I),
$ I = 1, MIN( M*K, N*L ) )
END IF
END IF
STOP
*
99999 FORMAT (' MB02JX EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02JX = ',I2)
99997 FORMAT (/' The factor Q is ')
99996 FORMAT (/' The factor R is ')
99995 FORMAT (/' The column permutation is ')
99994 FORMAT (/' Numerical rank ',/' RNK = ',I5)
99993 FORMAT (20(1X,F8.4))
99992 FORMAT (20(1X,I4))
99991 FORMAT (/' K is out of range.',/' K = ',I5)
99990 FORMAT (/' L is out of range.',/' L = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB02JX EXAMPLE PROGRAM DATA
3 3 4 4 -1.0D0 -1.0D0 Q
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 0.0 1.0
1.0 1.0 0.0
2.0 2.0 0.0
1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 1.0
1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 1.0
1.0 2.0 3.0 1.0 2.0 3.0 1.0 1.0 1.0
1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 0.0
</PRE>
<B>Program Results</B>
<PRE>
MB02JX EXAMPLE PROGRAM RESULTS
Numerical rank
RNK = 7
The factor Q is
-0.3313 -0.0105 -0.0353 0.0000 -0.4714 -0.8165 0.0000
-0.3313 -0.0105 -0.0353 0.0000 -0.4714 0.4082 0.7071
-0.3313 -0.0105 -0.0353 0.0000 -0.4714 0.4082 -0.7071
-0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000
-0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000
-0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000
-0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000
-0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000
-0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000
-0.1104 0.2824 0.9529 0.0000 0.0000 0.0000 0.0000
0.0000 0.4288 -0.1271 0.8944 0.0000 0.0000 0.0000
0.0000 0.8576 -0.2541 -0.4472 0.0000 0.0000 0.0000
The factor R is
-9.0554 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-3.0921 2.3322 0.0000 0.0000 0.0000 0.0000 0.0000
-5.9633 1.9557 -1.2706 0.0000 0.0000 0.0000 0.0000
-9.2762 4.4238 0.7623 1.3416 0.0000 0.0000 0.0000
-6.1842 2.9492 0.5082 0.8944 0.0000 0.0000 0.0000
-3.0921 1.4746 0.2541 0.4472 0.0000 0.0000 0.0000
-9.2762 4.4238 0.7623 1.3416 0.0000 0.0000 0.0000
-6.1842 2.9492 0.5082 0.8944 0.0000 0.0000 0.0000
-3.0921 1.4746 0.2541 0.4472 0.0000 0.0000 0.0000
-7.2885 4.4866 0.9741 1.3416 2.8284 0.0000 0.0000
-2.7608 1.4851 0.2894 0.4472 0.4714 0.8165 0.0000
-5.5216 2.9701 0.5788 0.8944 0.9428 0.4082 0.7071
The column permutation is
3 1 2 6 5 4 9 8 7 12 10 11
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|