File: MB02ND.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (583 lines) | stat: -rw-r--r-- 23,196 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
<HTML>
<HEAD><TITLE>MB02ND - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02ND">MB02ND</A></H2>
<H3>
Solution of Total Least-Squares problem using a partial SVD approach
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To solve the Total Least Squares (TLS) problem using a Partial
  Singular Value Decomposition (PSVD) approach.
  The TLS problem assumes an overdetermined set of linear equations
  AX = B, where both the data matrix A as well as the observation
  matrix B are inaccurate. The routine also solves determined and
  underdetermined sets of equations by computing the minimum norm
  solution.
  It is assumed that all preprocessing measures (scaling, coordinate
  transformations, whitening, ... ) of the data have been performed
  in advance.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02ND( M, N, L, RANK, THETA, C, LDC, X, LDX, Q, INUL,
     $                   TOL, RELTOL, IWORK, DWORK, LDWORK, BWORK,
     $                   IWARN, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, IWARN, L, LDC, LDWORK, LDX, M, N, RANK
      DOUBLE PRECISION  RELTOL, THETA, TOL
C     .. Array Arguments ..
      LOGICAL           BWORK(*), INUL(*)
      INTEGER           IWORK(*)
      DOUBLE PRECISION  C(LDC,*), DWORK(*), Q(*), X(LDX,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows in the data matrix A and the
          observation matrix B.  M &gt;= 0.

  N       (input) INTEGER
          The number of columns in the data matrix A.  N &gt;= 0.

  L       (input) INTEGER
          The number of columns in the observation matrix B.
          L &gt;= 0.

  RANK    (input/output) INTEGER
          On entry, if RANK &lt; 0, then the rank of the TLS
          approximation [A+DA|B+DB] (r say) is computed by the
          routine.
          Otherwise, RANK must specify the value of r.
          RANK &lt;= min(M,N).
          On exit, if RANK &lt; 0 on entry and INFO = 0, then RANK
          contains the computed rank of the TLS approximation
          [A+DA|B+DB].
          Otherwise, the user-supplied value of RANK may be
          changed by the routine on exit if the RANK-th and the
          (RANK+1)-th singular values of C = [A|B] are considered
          to be equal, or if the upper triangular matrix F (as
          defined in METHOD) is (numerically) singular.

  THETA   (input/output) DOUBLE PRECISION
          On entry, if RANK &lt; 0, then the rank of the TLS
          approximation [A+DA|B+DB] is computed using THETA as
          (min(M,N+L) - d), where d is the number of singular
          values of [A|B] &lt;= THETA. THETA &gt;= 0.0.
          Otherwise, THETA is an initial estimate (t say) for
          computing a lower bound on the RANK largest singular
          values of [A|B]. If THETA &lt; 0.0 on entry however, then
          t is computed by the routine.
          On exit, if RANK &gt;= 0 on entry, then THETA contains the
          computed bound such that precisely RANK singular values
          of C = [A|B] are greater than THETA + TOL.
          Otherwise, THETA is unchanged.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N+L)
          On entry, the leading M-by-(N+L) part of this array must
          contain the matrices A and B. Specifically, the first N
          columns must contain the data matrix A and the last L
          columns the observation matrix B (right-hand sides).
          On exit, if INFO = 0, the first N+L components of the
          columns of this array whose index i corresponds with
          INUL(i) = .TRUE., are the possibly transformed (N+L-RANK)
          base vectors of the right singular subspace corresponding
          to the singular values of C = [A|B] which are less than or
          equal to THETA. Specifically, if L = 0, or if RANK = 0 and
          IWARN &lt;&gt; 2, these vectors are indeed the base vectors
          above. Otherwise, these vectors form the matrix V2,
          transformed as described in Step 4 of the PTLS algorithm
          (see METHOD). The TLS solution is computed from these
          vectors. The other columns of array C contain no useful
          information.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= max(1,M,N+L).

  X       (output) DOUBLE PRECISION array, dimension (LDX,L)
          If INFO = 0, the leading N-by-L part of this array
          contains the solution X to the TLS problem specified by
          A and B.

  LDX     INTEGER
          The leading dimension of array X.  LDX &gt;= max(1,N).

  Q       (output) DOUBLE PRECISION array, dimension
          (max(1,2*min(M,N+L)-1))
          This array contains the partially diagonalized bidiagonal
          matrix J computed from C, at the moment that the desired
          singular subspace has been found. Specifically, the
          leading p = min(M,N+L) entries of Q contain the diagonal
          elements q(1),q(2),...,q(p) and the entries Q(p+1),Q(p+2),
          ...,Q(2*p-1) contain the superdiagonal elements e(1),e(2),
          ...,e(p-1) of J.

  INUL    (output) LOGICAL array, dimension (N+L)
          The indices of the elements of this array with value
          .TRUE. indicate the columns in C containing the base
          vectors of the right singular subspace of C from which
          the TLS solution has been computed.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          This parameter defines the multiplicity of singular values
          by considering all singular values within an interval of
          length TOL as coinciding. TOL is used in checking how many
          singular values are less than or equal to THETA. Also in
          computing an appropriate upper bound THETA by a bisection
          method, TOL is used as a stopping criterion defining the
          minimum (absolute) subinterval width. TOL is also taken
          as an absolute tolerance for negligible elements in the
          QR/QL iterations. If the user sets TOL to be less than or
          equal to 0, then the tolerance is taken as specified in
          SLICOT Library routine MB04YD document.

  RELTOL  DOUBLE PRECISION
          This parameter specifies the minimum relative width of an
          interval. When an interval is narrower than TOL, or than
          RELTOL times the larger (in magnitude) endpoint, then it
          is considered to be sufficiently small and bisection has
          converged. If the user sets RELTOL to be less than
          BASE * EPS, where BASE is machine radix and EPS is machine
          precision (see LAPACK Library routine DLAMCH), then the
          tolerance is taken as BASE * EPS.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N+2*L)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK, and DWORK(2) returns the reciprocal of the
          condition number of the matrix F.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK = max(2, max(M,N+L) + 2*min(M,N+L),
                       min(M,N+L) + LW + max(6*(N+L)-5,
                                             L*L+max(N+L,3*L)),
          where
          LW = (N+L)*(N+L-1)/2,  if M &gt;= N+L,
          LW = M*(N+L-(M-1)/2),  if M &lt;  N+L.
          For optimum performance LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

  BWORK   LOGICAL array, dimension (N+L)

</PRE>
<B>Warning Indicator</B>
<PRE>
  IWARN   INTEGER
          = 0:  no warnings;
          = 1:  if the rank of matrix C has been lowered because a
                singular value of multiplicity greater than 1 was
                found;
          = 2:  if the rank of matrix C has been lowered because the
                upper triangular matrix F is (numerically) singular.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  if the maximum number of QR/QL iteration steps
                (30*MIN(M,N)) has been exceeded;
          = 2:  if the computed rank of the TLS approximation
                [A+DA|B+DB] exceeds MIN(M,N). Try increasing the
                value of THETA or set the value of RANK to min(M,N).

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The method used is the Partial Total Least Squares (PTLS) approach
  proposed by Van Huffel and Vandewalle [5].

  Let C = [A|B] denote the matrix formed by adjoining the columns of
  B to the columns of A on the right.

  Total Least Squares (TLS) definition:
  -------------------------------------

    Given matrices A and B, find a matrix X satisfying

         (A + DA) X = B + DB,

    where A and DA are M-by-N matrices, B and DB are M-by-L matrices
    and X is an N-by-L matrix.
    The solution X must be such that the Frobenius norm of [DA|DB]
    is a minimum and each column of B + DB is in the range of
    A + DA. Whenever the solution is not unique, the routine singles
    out the minimum norm solution X.

  Let V denote the right singular subspace of C. Since the TLS
  solution can be computed from any orthogonal basis of the subspace
  of V corresponding to the smallest singular values of C, the
  Partial Singular Value Decomposition (PSVD) can be used instead of
  the classical SVD. The dimension of this subspace of V may be
  determined by the rank of C or by an upper bound for those
  smallest singular values.

  The PTLS algorithm proceeds as follows (see [2 - 5]):

  Step 1: Bidiagonalization phase
          -----------------------
   (a) If M is large enough than N + L, transform C into upper
       triangular form R by Householder transformations.
   (b) Transform C (or R) into upper bidiagonal form
       (p = min(M,N+L)):

                  |q(1) e(1)  0   ...  0   |
             (0)  | 0   q(2) e(2)      .   |
            J   = | .                  .   |
                  | .                e(p-1)|
                  | 0             ... q(p) |

       if M &gt;= N + L, or lower bidiagonal form:

                  |q(1)  0    0   ...  0     0   |
             (0)  |e(1) q(2)  0        .     .   |
            J   = | .                  .     .   |
                  | .                 q(p)   .   |
                  | 0             ... e(p-1) q(p)|

       if M &lt; N + L, using Householder transformations.
       In the second case, transform the matrix to the upper
       bidiagonal form by applying Givens rotations.
   (c) Initialize the right singular base matrix with the identity
       matrix.

  Step 2: Partial diagonalization phase
          -----------------------------
  If the upper bound THETA is not given, then compute THETA such
  that precisely p - RANK singular values (p=min(M,N+L)) of the
  bidiagonal matrix are less than or equal to THETA, using a
  bisection method [5]. Diagonalize the given bidiagonal matrix J
  partially, using either QL iterations (if the upper left diagonal
  element of the considered bidiagonal submatrix is smaller than the
  lower right diagonal element) or QR iterations, such that J is
  split into unreduced bidiagonal submatrices whose singular values
  are either all larger than THETA or are all less than or equal
  to THETA. Accumulate the Givens rotations in V.

  Step 3: Back transformation phase
          -------------------------
  Apply the Householder transformations of Step 1(b) onto the base
  vectors of V associated with the bidiagonal submatrices with all
  singular values less than or equal to THETA.

  Step 4: Computation of F and Y
          ----------------------
  Let V2 be the matrix of the columns of V corresponding to the
  (N + L - RANK) smallest singular values of C.
  Compute with Householder transformations the matrices F and Y
  such that:

                    |VH   Y|
           V2 x Q = |      |
                    |0    F|

  where Q is an orthogonal matrix, VH is an N-by-(N-RANK) matrix,
  Y is an N-by-L matrix and F is an L-by-L upper triangular matrix.
  If F is singular, then reduce the value of RANK by one and repeat
  Steps 2, 3 and 4.

  Step 5: Computation of the TLS solution
          -------------------------------
  If F is non-singular then the solution X is obtained by solving
  the following equations by forward elimination:

           X F = -Y.

  Notes:
  If RANK is lowered in Step 4, some additional base vectors must
  be computed in Step 2. The additional computations are kept to
  a minimum.
  If RANK is lowered in Step 4 but the multiplicity of the RANK-th
  singular value is larger than 1, then the value of RANK is further
  lowered with its multiplicity defined by the parameter TOL. This
  is done at the beginning of Step 2 by calling SLICOT Library
  routine MB03MD (from MB04YD), which estimates THETA using a
  bisection method. If F in Step 4 is singular, then the computed
  solution is infinite and hence does not satisfy the second TLS
  criterion (see TLS definition). For these cases, Golub and
  Van Loan [1] claim that the TLS problem has no solution. The
  properties of these so-called nongeneric problems are described
  in [6] and the TLS computations are generalized in order to solve
  them. As proven in [6], the proposed generalization satisfies the
  TLS criteria for any number L of observation vectors in B provided
  that, in addition, the solution | X| is constrained to be
                                  |-I|
  orthogonal to all vectors of the form |w| which belong to the
                                        |0|
  space generated by the columns of the submatrix |Y|.
                                                  |F|

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Golub, G.H. and Van Loan, C.F.
      An Analysis of the Total Least-Squares Problem.
      SIAM J. Numer. Anal., 17, pp. 883-893, 1980.

  [2] Van Huffel, S., Vandewalle, J. and Haegemans, A.
      An Efficient and Reliable Algorithm for Computing the
      Singular Subspace of a Matrix Associated with its Smallest
      Singular Values.
      J. Comput. and Appl. Math., 19, pp. 313-330, 1987.

  [3] Van Huffel, S.
      Analysis of the Total Least Squares Problem and its Use in
      Parameter Estimation.
      Doctoral dissertation, Dept. of Electr. Eng., Katholieke
      Universiteit Leuven, Belgium, June 1987.

  [4] Chan, T.F.
      An Improved Algorithm for Computing the Singular Value
      Decomposition.
      ACM TOMS, 8, pp. 72-83, 1982.

  [5] Van Huffel, S. and Vandewalle, J.
      The Partial Total Least Squares Algorithm.
      J. Comput. Appl. Math., 21, pp. 333-341, 1988.

  [6] Van Huffel, S. and Vandewalle, J.
      Analysis and Solution of the Nongeneric Total Least Squares
      Problem.
      SIAM J. Matr. Anal. and Appl., 9, pp. 360-372, 1988.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The computational efficiency of the PTLS algorithm compared with
  the classical TLS algorithm (see [2 - 5]) is obtained by making
  use of PSVD (see [1]) instead of performing the entire SVD.
  Depending on the gap between the RANK-th and the (RANK+1)-th
  singular values of C, the number (N + L - RANK) of base vectors to
  be computed with respect to the column dimension (N + L) of C and
  the desired accuracy RELTOL, the algorithm used by this routine is
  approximately twice as fast as the classical TLS algorithm at the
  expense of extra storage requirements, namely:
    (N + L) x (N + L - 1)/2  if M &gt;= N + L or
    M x (N + L - (M - 1)/2)  if M &lt;  N + L.
  This is because the Householder transformations performed on the
  rows of C in the bidiagonalization phase (see Step 1) must be kept
  until the end (Step 5).

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB02ND EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER        ( ZERO = 0.0D0 )
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MMAX, NMAX, LMAX
      PARAMETER        ( MMAX = 20, NMAX = 20, LMAX = 20 )
      INTEGER          LDC, LDX
      PARAMETER        ( LDC = MAX( MMAX, NMAX+LMAX ), LDX = NMAX )
      INTEGER          LENGQ
      PARAMETER        ( LENGQ = 2*MIN(MMAX,NMAX+LMAX)-1 )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = NMAX+2*LMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX(2, MAX( MMAX, NMAX+LMAX ) +
     $                            2*MIN( MMAX, NMAX+LMAX ),
     $                            MIN( MMAX, NMAX+LMAX ) +
     $                            MAX( ( NMAX+LMAX )*( NMAX+LMAX-1 )/2,
     $                              MMAX*( NMAX+LMAX-( MMAX-1 )/2 ) ) +
     $                            MAX( 6*(NMAX+LMAX)-5, LMAX*LMAX +
     $                                 MAX( NMAX+LMAX, 3*LMAX ) ) ) )
      INTEGER          LBWORK
      PARAMETER        ( LBWORK = NMAX+LMAX )
*     .. Local Scalars ..
      DOUBLE PRECISION RELTOL, THETA, THETA1, TOL
      INTEGER          I, INFO, IWARN, J, K, L, LOOP, M, MINMNL, N,
     $                 RANK, RANK1
*     .. Local Arrays ..
      DOUBLE PRECISION C(LDC,NMAX+LMAX), DWORK(LDWORK),
     $                 Q(LENGQ), X(LDX,LMAX)
      INTEGER          IWORK(LIWORK)
      LOGICAL          BWORK(LBWORK), INUL(NMAX+LMAX)
*     .. External Subroutines ..
      EXTERNAL         MB02ND
*     .. Intrinsic Functions ..
      INTRINSIC        MAX, MIN
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) M, N, L, RANK, THETA, TOL, RELTOL
      IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99982 ) M
      ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99983 ) N
      ELSE IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
         WRITE ( NOUT, FMT = 99981 ) L
      ELSE IF ( RANK.GT.MIN( MMAX, NMAX ) ) THEN
         WRITE ( NOUT, FMT = 99980 ) RANK
      ELSE IF ( RANK.LT.0 .AND. THETA.LT.ZERO ) THEN
         WRITE ( NOUT, FMT = 99979 ) THETA
      ELSE
         READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N+L ), I = 1,M )
         RANK1 = RANK
         THETA1 = THETA
*        Compute the solution to the TLS problem Ax = b.
         CALL MB02ND( M, N, L, RANK, THETA, C, LDC, X, LDX, Q, INUL,
     $                TOL, RELTOL, IWORK, DWORK, LDWORK, BWORK, IWARN,
     $                INFO )
*
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            IF ( IWARN.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99997 ) IWARN
               WRITE ( NOUT, FMT = 99996 ) RANK
            ELSE
               IF ( RANK1.LT.0 ) WRITE ( NOUT, FMT = 99996 ) RANK
            END IF
            IF ( THETA1.LT.ZERO ) WRITE ( NOUT, FMT = 99995 ) THETA
            WRITE ( NOUT, FMT = 99994 )
            MINMNL = MIN( M, N+L )
            LOOP = MINMNL - 1
            DO 20 I = 1, LOOP
               K = I + MINMNL
               WRITE ( NOUT, FMT = 99993 ) I, I, Q(I), I, I + 1, Q(K)
   20       CONTINUE
            WRITE ( NOUT, FMT = 99992 ) MINMNL, MINMNL, Q(MINMNL)
            WRITE ( NOUT, FMT = 99991 )
            DO 60 J = 1, L
               DO 40 I = 1, N
                  WRITE ( NOUT, FMT = 99990 ) X(I,J)
   40          CONTINUE
               IF ( J.LT.L ) WRITE ( NOUT, FMT = 99989 )
   60       CONTINUE
            WRITE ( NOUT, FMT = 99987 ) N + L, N + L
            WRITE ( NOUT, FMT = 99985 )
            DO 80 I = 1, MAX( M, N + L )
               WRITE ( NOUT, FMT = 99984 ) ( C(I,J), J = 1,N+L )
   80       CONTINUE
            WRITE ( NOUT, FMT = 99986 )
            DO 100 J = 1, N + L
               WRITE ( NOUT, FMT = 99988 ) J, INUL(J)
  100       CONTINUE
         END IF
      END IF
      STOP
*
99999 FORMAT (' MB02ND EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02ND = ',I2)
99997 FORMAT (' IWARN on exit from MB02ND = ',I2,/)
99996 FORMAT (' The computed rank of the TLS approximation  = ',I3,/)
99995 FORMAT (' The computed value of THETA = ',F7.4,/)
99994 FORMAT (' The elements of the partially diagonalized bidiagonal ',
     $       'matrix are',/)
99993 FORMAT (2(' (',I1,',',I1,') = ',F7.4,2X))
99992 FORMAT (' (',I1,',',I1,') = ',F7.4,/)
99991 FORMAT (' The solution X to the TLS problem is ',/)
99990 FORMAT (1X,F8.4)
99989 FORMAT (' ')
99988 FORMAT (I3,L8)
99987 FORMAT (/' Right singular subspace corresponds to the first ',I2,
     $       ' components of the j-th ',/' column of C for which INUL(',
     $       'j) = .TRUE., j = 1,...,',I2,/)
99986 FORMAT (/'  j    INUL(j)',/)
99985 FORMAT (' Matrix C',/)
99984 FORMAT (20(1X,F8.4))
99983 FORMAT (/' N is out of range.',/' N = ',I5)
99982 FORMAT (/' M is out of range.',/' M = ',I5)
99981 FORMAT (/' L is out of range.',/' L = ',I5)
99980 FORMAT (/' RANK is out of range.',/' RANK = ',I5)
99979 FORMAT (/' THETA must be at least zero.',/' THETA = ',F8.4)
      END
</PRE>
<B>Program Data</B>
<PRE>
 MB02ND EXAMPLE PROGRAM DATA
   6     3     1     -1     0.001     0.0     0.0
   0.80010  0.39985  0.60005  0.89999
   0.29996  0.69990  0.39997  0.82997
   0.49994  0.60003  0.20012  0.79011
   0.90013  0.20016  0.79995  0.85002
   0.39998  0.80006  0.49985  0.99016
   0.20002  0.90007  0.70009  1.02994
</PRE>
<B>Program Results</B>
<PRE>
 MB02ND EXAMPLE PROGRAM RESULTS

 The computed rank of the TLS approximation  =   3

 The elements of the partially diagonalized bidiagonal matrix are

 (1,1) =  3.2280   (1,2) = -0.0287
 (2,2) =  0.8714   (2,3) =  0.0168
 (3,3) =  0.3698   (3,4) =  0.0000
 (4,4) =  0.0001

 The solution X to the TLS problem is 

   0.5003
   0.8003
   0.2995

 Right singular subspace corresponds to the first  4 components of the j-th 
 column of C for which INUL(j) = .TRUE., j = 1,..., 4

 Matrix C

  -0.3967  -0.7096   0.4612  -0.3555
   0.9150  -0.2557   0.2414  -0.5687
  -0.0728   0.6526   0.5215  -0.2128
   0.0000   0.0720   0.6761   0.7106
   0.1809   0.3209   0.0247  -0.4139
   0.0905   0.4609  -0.3528   0.5128

  j    INUL(j)

  1       F
  2       F
  3       F
  4       T
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>