1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
<HTML>
<HEAD><TITLE>MB02ND - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02ND">MB02ND</A></H2>
<H3>
Solution of Total Least-Squares problem using a partial SVD approach
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve the Total Least Squares (TLS) problem using a Partial
Singular Value Decomposition (PSVD) approach.
The TLS problem assumes an overdetermined set of linear equations
AX = B, where both the data matrix A as well as the observation
matrix B are inaccurate. The routine also solves determined and
underdetermined sets of equations by computing the minimum norm
solution.
It is assumed that all preprocessing measures (scaling, coordinate
transformations, whitening, ... ) of the data have been performed
in advance.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02ND( M, N, L, RANK, THETA, C, LDC, X, LDX, Q, INUL,
$ TOL, RELTOL, IWORK, DWORK, LDWORK, BWORK,
$ IWARN, INFO )
C .. Scalar Arguments ..
INTEGER INFO, IWARN, L, LDC, LDWORK, LDX, M, N, RANK
DOUBLE PRECISION RELTOL, THETA, TOL
C .. Array Arguments ..
LOGICAL BWORK(*), INUL(*)
INTEGER IWORK(*)
DOUBLE PRECISION C(LDC,*), DWORK(*), Q(*), X(LDX,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows in the data matrix A and the
observation matrix B. M >= 0.
N (input) INTEGER
The number of columns in the data matrix A. N >= 0.
L (input) INTEGER
The number of columns in the observation matrix B.
L >= 0.
RANK (input/output) INTEGER
On entry, if RANK < 0, then the rank of the TLS
approximation [A+DA|B+DB] (r say) is computed by the
routine.
Otherwise, RANK must specify the value of r.
RANK <= min(M,N).
On exit, if RANK < 0 on entry and INFO = 0, then RANK
contains the computed rank of the TLS approximation
[A+DA|B+DB].
Otherwise, the user-supplied value of RANK may be
changed by the routine on exit if the RANK-th and the
(RANK+1)-th singular values of C = [A|B] are considered
to be equal, or if the upper triangular matrix F (as
defined in METHOD) is (numerically) singular.
THETA (input/output) DOUBLE PRECISION
On entry, if RANK < 0, then the rank of the TLS
approximation [A+DA|B+DB] is computed using THETA as
(min(M,N+L) - d), where d is the number of singular
values of [A|B] <= THETA. THETA >= 0.0.
Otherwise, THETA is an initial estimate (t say) for
computing a lower bound on the RANK largest singular
values of [A|B]. If THETA < 0.0 on entry however, then
t is computed by the routine.
On exit, if RANK >= 0 on entry, then THETA contains the
computed bound such that precisely RANK singular values
of C = [A|B] are greater than THETA + TOL.
Otherwise, THETA is unchanged.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N+L)
On entry, the leading M-by-(N+L) part of this array must
contain the matrices A and B. Specifically, the first N
columns must contain the data matrix A and the last L
columns the observation matrix B (right-hand sides).
On exit, if INFO = 0, the first N+L components of the
columns of this array whose index i corresponds with
INUL(i) = .TRUE., are the possibly transformed (N+L-RANK)
base vectors of the right singular subspace corresponding
to the singular values of C = [A|B] which are less than or
equal to THETA. Specifically, if L = 0, or if RANK = 0 and
IWARN <> 2, these vectors are indeed the base vectors
above. Otherwise, these vectors form the matrix V2,
transformed as described in Step 4 of the PTLS algorithm
(see METHOD). The TLS solution is computed from these
vectors. The other columns of array C contain no useful
information.
LDC INTEGER
The leading dimension of array C. LDC >= max(1,M,N+L).
X (output) DOUBLE PRECISION array, dimension (LDX,L)
If INFO = 0, the leading N-by-L part of this array
contains the solution X to the TLS problem specified by
A and B.
LDX INTEGER
The leading dimension of array X. LDX >= max(1,N).
Q (output) DOUBLE PRECISION array, dimension
(max(1,2*min(M,N+L)-1))
This array contains the partially diagonalized bidiagonal
matrix J computed from C, at the moment that the desired
singular subspace has been found. Specifically, the
leading p = min(M,N+L) entries of Q contain the diagonal
elements q(1),q(2),...,q(p) and the entries Q(p+1),Q(p+2),
...,Q(2*p-1) contain the superdiagonal elements e(1),e(2),
...,e(p-1) of J.
INUL (output) LOGICAL array, dimension (N+L)
The indices of the elements of this array with value
.TRUE. indicate the columns in C containing the base
vectors of the right singular subspace of C from which
the TLS solution has been computed.
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
This parameter defines the multiplicity of singular values
by considering all singular values within an interval of
length TOL as coinciding. TOL is used in checking how many
singular values are less than or equal to THETA. Also in
computing an appropriate upper bound THETA by a bisection
method, TOL is used as a stopping criterion defining the
minimum (absolute) subinterval width. TOL is also taken
as an absolute tolerance for negligible elements in the
QR/QL iterations. If the user sets TOL to be less than or
equal to 0, then the tolerance is taken as specified in
SLICOT Library routine MB04YD document.
RELTOL DOUBLE PRECISION
This parameter specifies the minimum relative width of an
interval. When an interval is narrower than TOL, or than
RELTOL times the larger (in magnitude) endpoint, then it
is considered to be sufficiently small and bisection has
converged. If the user sets RELTOL to be less than
BASE * EPS, where BASE is machine radix and EPS is machine
precision (see LAPACK Library routine DLAMCH), then the
tolerance is taken as BASE * EPS.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N+2*L)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK, and DWORK(2) returns the reciprocal of the
condition number of the matrix F.
LDWORK INTEGER
The length of the array DWORK.
LDWORK = max(2, max(M,N+L) + 2*min(M,N+L),
min(M,N+L) + LW + max(6*(N+L)-5,
L*L+max(N+L,3*L)),
where
LW = (N+L)*(N+L-1)/2, if M >= N+L,
LW = M*(N+L-(M-1)/2), if M < N+L.
For optimum performance LDWORK should be larger.
If LDWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the
DWORK array, returns this value as the first entry of
the DWORK array, and no error message related to LDWORK
is issued by XERBLA.
BWORK LOGICAL array, dimension (N+L)
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warnings;
= 1: if the rank of matrix C has been lowered because a
singular value of multiplicity greater than 1 was
found;
= 2: if the rank of matrix C has been lowered because the
upper triangular matrix F is (numerically) singular.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the maximum number of QR/QL iteration steps
(30*MIN(M,N)) has been exceeded;
= 2: if the computed rank of the TLS approximation
[A+DA|B+DB] exceeds MIN(M,N). Try increasing the
value of THETA or set the value of RANK to min(M,N).
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The method used is the Partial Total Least Squares (PTLS) approach
proposed by Van Huffel and Vandewalle [5].
Let C = [A|B] denote the matrix formed by adjoining the columns of
B to the columns of A on the right.
Total Least Squares (TLS) definition:
-------------------------------------
Given matrices A and B, find a matrix X satisfying
(A + DA) X = B + DB,
where A and DA are M-by-N matrices, B and DB are M-by-L matrices
and X is an N-by-L matrix.
The solution X must be such that the Frobenius norm of [DA|DB]
is a minimum and each column of B + DB is in the range of
A + DA. Whenever the solution is not unique, the routine singles
out the minimum norm solution X.
Let V denote the right singular subspace of C. Since the TLS
solution can be computed from any orthogonal basis of the subspace
of V corresponding to the smallest singular values of C, the
Partial Singular Value Decomposition (PSVD) can be used instead of
the classical SVD. The dimension of this subspace of V may be
determined by the rank of C or by an upper bound for those
smallest singular values.
The PTLS algorithm proceeds as follows (see [2 - 5]):
Step 1: Bidiagonalization phase
-----------------------
(a) If M is large enough than N + L, transform C into upper
triangular form R by Householder transformations.
(b) Transform C (or R) into upper bidiagonal form
(p = min(M,N+L)):
|q(1) e(1) 0 ... 0 |
(0) | 0 q(2) e(2) . |
J = | . . |
| . e(p-1)|
| 0 ... q(p) |
if M >= N + L, or lower bidiagonal form:
|q(1) 0 0 ... 0 0 |
(0) |e(1) q(2) 0 . . |
J = | . . . |
| . q(p) . |
| 0 ... e(p-1) q(p)|
if M < N + L, using Householder transformations.
In the second case, transform the matrix to the upper
bidiagonal form by applying Givens rotations.
(c) Initialize the right singular base matrix with the identity
matrix.
Step 2: Partial diagonalization phase
-----------------------------
If the upper bound THETA is not given, then compute THETA such
that precisely p - RANK singular values (p=min(M,N+L)) of the
bidiagonal matrix are less than or equal to THETA, using a
bisection method [5]. Diagonalize the given bidiagonal matrix J
partially, using either QL iterations (if the upper left diagonal
element of the considered bidiagonal submatrix is smaller than the
lower right diagonal element) or QR iterations, such that J is
split into unreduced bidiagonal submatrices whose singular values
are either all larger than THETA or are all less than or equal
to THETA. Accumulate the Givens rotations in V.
Step 3: Back transformation phase
-------------------------
Apply the Householder transformations of Step 1(b) onto the base
vectors of V associated with the bidiagonal submatrices with all
singular values less than or equal to THETA.
Step 4: Computation of F and Y
----------------------
Let V2 be the matrix of the columns of V corresponding to the
(N + L - RANK) smallest singular values of C.
Compute with Householder transformations the matrices F and Y
such that:
|VH Y|
V2 x Q = | |
|0 F|
where Q is an orthogonal matrix, VH is an N-by-(N-RANK) matrix,
Y is an N-by-L matrix and F is an L-by-L upper triangular matrix.
If F is singular, then reduce the value of RANK by one and repeat
Steps 2, 3 and 4.
Step 5: Computation of the TLS solution
-------------------------------
If F is non-singular then the solution X is obtained by solving
the following equations by forward elimination:
X F = -Y.
Notes:
If RANK is lowered in Step 4, some additional base vectors must
be computed in Step 2. The additional computations are kept to
a minimum.
If RANK is lowered in Step 4 but the multiplicity of the RANK-th
singular value is larger than 1, then the value of RANK is further
lowered with its multiplicity defined by the parameter TOL. This
is done at the beginning of Step 2 by calling SLICOT Library
routine MB03MD (from MB04YD), which estimates THETA using a
bisection method. If F in Step 4 is singular, then the computed
solution is infinite and hence does not satisfy the second TLS
criterion (see TLS definition). For these cases, Golub and
Van Loan [1] claim that the TLS problem has no solution. The
properties of these so-called nongeneric problems are described
in [6] and the TLS computations are generalized in order to solve
them. As proven in [6], the proposed generalization satisfies the
TLS criteria for any number L of observation vectors in B provided
that, in addition, the solution | X| is constrained to be
|-I|
orthogonal to all vectors of the form |w| which belong to the
|0|
space generated by the columns of the submatrix |Y|.
|F|
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Golub, G.H. and Van Loan, C.F.
An Analysis of the Total Least-Squares Problem.
SIAM J. Numer. Anal., 17, pp. 883-893, 1980.
[2] Van Huffel, S., Vandewalle, J. and Haegemans, A.
An Efficient and Reliable Algorithm for Computing the
Singular Subspace of a Matrix Associated with its Smallest
Singular Values.
J. Comput. and Appl. Math., 19, pp. 313-330, 1987.
[3] Van Huffel, S.
Analysis of the Total Least Squares Problem and its Use in
Parameter Estimation.
Doctoral dissertation, Dept. of Electr. Eng., Katholieke
Universiteit Leuven, Belgium, June 1987.
[4] Chan, T.F.
An Improved Algorithm for Computing the Singular Value
Decomposition.
ACM TOMS, 8, pp. 72-83, 1982.
[5] Van Huffel, S. and Vandewalle, J.
The Partial Total Least Squares Algorithm.
J. Comput. Appl. Math., 21, pp. 333-341, 1988.
[6] Van Huffel, S. and Vandewalle, J.
Analysis and Solution of the Nongeneric Total Least Squares
Problem.
SIAM J. Matr. Anal. and Appl., 9, pp. 360-372, 1988.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The computational efficiency of the PTLS algorithm compared with
the classical TLS algorithm (see [2 - 5]) is obtained by making
use of PSVD (see [1]) instead of performing the entire SVD.
Depending on the gap between the RANK-th and the (RANK+1)-th
singular values of C, the number (N + L - RANK) of base vectors to
be computed with respect to the column dimension (N + L) of C and
the desired accuracy RELTOL, the algorithm used by this routine is
approximately twice as fast as the classical TLS algorithm at the
expense of extra storage requirements, namely:
(N + L) x (N + L - 1)/2 if M >= N + L or
M x (N + L - (M - 1)/2) if M < N + L.
This is because the Householder transformations performed on the
rows of C in the bidiagonalization phase (see Step 1) must be kept
until the end (Step 5).
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB02ND EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX, LMAX
PARAMETER ( MMAX = 20, NMAX = 20, LMAX = 20 )
INTEGER LDC, LDX
PARAMETER ( LDC = MAX( MMAX, NMAX+LMAX ), LDX = NMAX )
INTEGER LENGQ
PARAMETER ( LENGQ = 2*MIN(MMAX,NMAX+LMAX)-1 )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX+2*LMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX(2, MAX( MMAX, NMAX+LMAX ) +
$ 2*MIN( MMAX, NMAX+LMAX ),
$ MIN( MMAX, NMAX+LMAX ) +
$ MAX( ( NMAX+LMAX )*( NMAX+LMAX-1 )/2,
$ MMAX*( NMAX+LMAX-( MMAX-1 )/2 ) ) +
$ MAX( 6*(NMAX+LMAX)-5, LMAX*LMAX +
$ MAX( NMAX+LMAX, 3*LMAX ) ) ) )
INTEGER LBWORK
PARAMETER ( LBWORK = NMAX+LMAX )
* .. Local Scalars ..
DOUBLE PRECISION RELTOL, THETA, THETA1, TOL
INTEGER I, INFO, IWARN, J, K, L, LOOP, M, MINMNL, N,
$ RANK, RANK1
* .. Local Arrays ..
DOUBLE PRECISION C(LDC,NMAX+LMAX), DWORK(LDWORK),
$ Q(LENGQ), X(LDX,LMAX)
INTEGER IWORK(LIWORK)
LOGICAL BWORK(LBWORK), INUL(NMAX+LMAX)
* .. External Subroutines ..
EXTERNAL MB02ND
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, N, L, RANK, THETA, TOL, RELTOL
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99982 ) M
ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99983 ) N
ELSE IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99981 ) L
ELSE IF ( RANK.GT.MIN( MMAX, NMAX ) ) THEN
WRITE ( NOUT, FMT = 99980 ) RANK
ELSE IF ( RANK.LT.0 .AND. THETA.LT.ZERO ) THEN
WRITE ( NOUT, FMT = 99979 ) THETA
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N+L ), I = 1,M )
RANK1 = RANK
THETA1 = THETA
* Compute the solution to the TLS problem Ax = b.
CALL MB02ND( M, N, L, RANK, THETA, C, LDC, X, LDX, Q, INUL,
$ TOL, RELTOL, IWORK, DWORK, LDWORK, BWORK, IWARN,
$ INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( IWARN.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) IWARN
WRITE ( NOUT, FMT = 99996 ) RANK
ELSE
IF ( RANK1.LT.0 ) WRITE ( NOUT, FMT = 99996 ) RANK
END IF
IF ( THETA1.LT.ZERO ) WRITE ( NOUT, FMT = 99995 ) THETA
WRITE ( NOUT, FMT = 99994 )
MINMNL = MIN( M, N+L )
LOOP = MINMNL - 1
DO 20 I = 1, LOOP
K = I + MINMNL
WRITE ( NOUT, FMT = 99993 ) I, I, Q(I), I, I + 1, Q(K)
20 CONTINUE
WRITE ( NOUT, FMT = 99992 ) MINMNL, MINMNL, Q(MINMNL)
WRITE ( NOUT, FMT = 99991 )
DO 60 J = 1, L
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99990 ) X(I,J)
40 CONTINUE
IF ( J.LT.L ) WRITE ( NOUT, FMT = 99989 )
60 CONTINUE
WRITE ( NOUT, FMT = 99987 ) N + L, N + L
WRITE ( NOUT, FMT = 99985 )
DO 80 I = 1, MAX( M, N + L )
WRITE ( NOUT, FMT = 99984 ) ( C(I,J), J = 1,N+L )
80 CONTINUE
WRITE ( NOUT, FMT = 99986 )
DO 100 J = 1, N + L
WRITE ( NOUT, FMT = 99988 ) J, INUL(J)
100 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (' MB02ND EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02ND = ',I2)
99997 FORMAT (' IWARN on exit from MB02ND = ',I2,/)
99996 FORMAT (' The computed rank of the TLS approximation = ',I3,/)
99995 FORMAT (' The computed value of THETA = ',F7.4,/)
99994 FORMAT (' The elements of the partially diagonalized bidiagonal ',
$ 'matrix are',/)
99993 FORMAT (2(' (',I1,',',I1,') = ',F7.4,2X))
99992 FORMAT (' (',I1,',',I1,') = ',F7.4,/)
99991 FORMAT (' The solution X to the TLS problem is ',/)
99990 FORMAT (1X,F8.4)
99989 FORMAT (' ')
99988 FORMAT (I3,L8)
99987 FORMAT (/' Right singular subspace corresponds to the first ',I2,
$ ' components of the j-th ',/' column of C for which INUL(',
$ 'j) = .TRUE., j = 1,...,',I2,/)
99986 FORMAT (/' j INUL(j)',/)
99985 FORMAT (' Matrix C',/)
99984 FORMAT (20(1X,F8.4))
99983 FORMAT (/' N is out of range.',/' N = ',I5)
99982 FORMAT (/' M is out of range.',/' M = ',I5)
99981 FORMAT (/' L is out of range.',/' L = ',I5)
99980 FORMAT (/' RANK is out of range.',/' RANK = ',I5)
99979 FORMAT (/' THETA must be at least zero.',/' THETA = ',F8.4)
END
</PRE>
<B>Program Data</B>
<PRE>
MB02ND EXAMPLE PROGRAM DATA
6 3 1 -1 0.001 0.0 0.0
0.80010 0.39985 0.60005 0.89999
0.29996 0.69990 0.39997 0.82997
0.49994 0.60003 0.20012 0.79011
0.90013 0.20016 0.79995 0.85002
0.39998 0.80006 0.49985 0.99016
0.20002 0.90007 0.70009 1.02994
</PRE>
<B>Program Results</B>
<PRE>
MB02ND EXAMPLE PROGRAM RESULTS
The computed rank of the TLS approximation = 3
The elements of the partially diagonalized bidiagonal matrix are
(1,1) = 3.2280 (1,2) = -0.0287
(2,2) = 0.8714 (2,3) = 0.0168
(3,3) = 0.3698 (3,4) = 0.0000
(4,4) = 0.0001
The solution X to the TLS problem is
0.5003
0.8003
0.2995
Right singular subspace corresponds to the first 4 components of the j-th
column of C for which INUL(j) = .TRUE., j = 1,..., 4
Matrix C
-0.3967 -0.7096 0.4612 -0.3555
0.9150 -0.2557 0.2414 -0.5687
-0.0728 0.6526 0.5215 -0.2128
0.0000 0.0720 0.6761 0.7106
0.1809 0.3209 0.0247 -0.4139
0.0905 0.4609 -0.3528 0.5128
j INUL(j)
1 F
2 F
3 F
4 T
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|