File: MB02OD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (210 lines) | stat: -rw-r--r-- 6,734 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
<HTML>
<HEAD><TITLE>MB02OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02OD">MB02OD</A></H2>
<H3>
Solution of matrix equations A X = alpha B, or X A = alpha B, A triangular
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To solve (if well-conditioned) one of the matrix equations

     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,

  where alpha is a scalar, X and B are m-by-n matrices, A is a unit,
  or non-unit, upper or lower triangular matrix and op( A ) is one
  of

     op( A ) = A   or   op( A ) = A'.

  An estimate of the reciprocal of the condition number of the
  triangular matrix A, in either the 1-norm or the infinity-norm, is
  also computed as

     RCOND = 1 / ( norm(A) * norm(inv(A)) ).

  and the specified matrix equation is solved only if RCOND is
  larger than a given tolerance TOL.  In that case, the matrix X is
  overwritten on B.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02OD( SIDE, UPLO, TRANS, DIAG, NORM, M, N, ALPHA, A,
     $                   LDA, B, LDB, RCOND, TOL, IWORK, DWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          DIAG, NORM, SIDE, TRANS, UPLO
      INTEGER            INFO, LDA, LDB, M, N
      DOUBLE PRECISION   ALPHA, RCOND, TOL
C     .. Array Arguments ..
      INTEGER            IWORK(*)
      DOUBLE PRECISION   A(LDA,*), B(LDB,*), DWORK(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  SIDE    CHARACTER*1
          Specifies whether op( A ) appears on the left or right
          of X as follows:
          = 'L':  op( A )*X = alpha*B;
          = 'R':  X*op( A ) = alpha*B.

  UPLO    CHARACTER*1
          Specifies whether the matrix A is an upper or lower
          triangular matrix as follows:
          = 'U':  A is an upper triangular matrix;
          = 'L':  A is a lower triangular matrix.

  TRANS   CHARACTER*1
          Specifies the form of op( A ) to be used in the matrix
          multiplication as follows:
          = 'N':  op( A ) = A;
          = 'T':  op( A ) = A';
          = 'C':  op( A ) = A'.

  DIAG    CHARACTER*1
          Specifies whether or not A is unit triangular as follows:
          = 'U':  A is assumed to be unit triangular;
          = 'N':  A is not assumed to be unit triangular.

  NORM    CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows of B.  M &gt;= 0.

  N       (input) INTEGER
          The number of columns of B.  N &gt;= 0.

  ALPHA   (input) DOUBLE PRECISION
          The scalar  alpha. When alpha is zero then A is not
          referenced and B need not be set before entry.

  A       (input) DOUBLE PRECISION array, dimension (LDA,k),
          where k is M when SIDE = 'L' and is N when SIDE = 'R'.
          On entry with UPLO = 'U', the leading k-by-k upper
          triangular part of this array must contain the upper
          triangular matrix and the strictly lower triangular part
          of A is not referenced.
          On entry with UPLO = 'L', the leading k-by-k lower
          triangular part of this array must contain the lower
          triangular matrix and the strictly upper triangular part
          of A is not referenced.
          Note that when DIAG = 'U', the diagonal elements of A are
          not referenced either, but are assumed to be unity.

  LDA     INTEGER
          The leading dimension of array A.
          LDA &gt;= max(1,M) when SIDE = 'L';
          LDA &gt;= max(1,N) when SIDE = 'R'.

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the leading M-by-N part of this array must
          contain the right-hand side matrix B.
          On exit, if INFO = 0, the leading M-by-N part of this
          array contains the solution matrix X.
          Otherwise, this array is not modified by the routine.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= max(1,M).

  RCOND   (output) DOUBLE PRECISION
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(norm(A) * norm(inv(A))).

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          The tolerance to be used to test for near singularity of
          the matrix A. If the user sets TOL &gt; 0, then the given
          value of TOL is used as a lower bound for the reciprocal
          condition number of that matrix; a matrix whose estimated
          condition number is less than 1/TOL is considered to be
          nonsingular. If the user sets TOL &lt;= 0, then an implicitly
          computed, default tolerance, defined by TOLDEF = k*k*EPS,
          is used instead, where EPS is the machine precision (see
          LAPACK Library routine DLAMCH).

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (k)

  DWORK   DOUBLE PRECISION array, dimension (3*k)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the matrix A is numerically singular, i.e. the
                condition number estimate of A (in the specified
                norm) exceeds 1/TOL.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  An estimate of the reciprocal of the condition number of the
  triangular matrix A (in the specified norm) is computed, and if
  this estimate is larger then the given (or default) tolerance,
  the specified matrix equation is solved using Level 3 BLAS
  routine DTRSM.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  None.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                          2
  The algorithm requires k N/2 operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>