1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
<HTML>
<HEAD><TITLE>MB02QD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02QD">MB02QD</A></H2>
<H3>
Solution of a linear least squares problem corresponding to specified free elements
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a solution, optionally corresponding to specified free
elements, to a real linear least squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of the M-by-N matrix A,
which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02QD( JOB, INIPER, M, N, NRHS, RCOND, SVLMAX, A, LDA,
$ B, LDB, Y, JPVT, RANK, SVAL, DWORK, LDWORK,
$ INFO )
C .. Scalar Arguments ..
CHARACTER INIPER, JOB
INTEGER INFO, LDA, LDB, LDWORK, M, N, NRHS, RANK
DOUBLE PRECISION RCOND, SVLMAX
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ),
$ SVAL( 3 ), Y ( * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies whether or not a standard least squares solution
must be computed, as follows:
= 'L': Compute a standard least squares solution (Y = 0);
= 'F': Compute a solution with specified free elements
(given in Y).
INIPER CHARACTER*1
Specifies whether an initial column permutation, defined
by JPVT, must be performed, as follows:
= 'P': Perform an initial column permutation;
= 'N': Do not perform an initial column permutation.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices B and X. NRHS >= 0.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number is less than 1/RCOND.
0 <= RCOND <= 1.
SVLMAX (input) DOUBLE PRECISION
If A is a submatrix of another matrix C, and the rank
decision should be related to that matrix, then SVLMAX
should be an estimate of the largest singular value of C
(for instance, the Frobenius norm of C). If this is not
the case, the input value SVLMAX = 0 should work.
SVLMAX >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N part of this array must
contain the given matrix A.
On exit, the leading M-by-N part of this array contains
details of its complete orthogonal factorization:
the leading RANK-by-RANK upper triangular part contains
the upper triangular factor T11 (see METHOD);
the elements below the diagonal, with the entries 2 to
min(M,N)+1 of the array DWORK, represent the orthogonal
matrix Q as a product of min(M,N) elementary reflectors
(see METHOD);
the elements of the subarray A(1:RANK,RANK+1:N), with the
next RANK entries of the array DWORK, represent the
orthogonal matrix Z as a product of RANK elementary
reflectors (see METHOD).
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension
(LDB,NRHS)
On entry, the leading M-by-NRHS part of this array must
contain the right hand side matrix B.
On exit, the leading N-by-NRHS part of this array contains
the solution matrix X.
If M >= N and RANK = N, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements N+1:M in that column.
If NRHS = 0, this array is not referenced, and the routine
returns the effective rank of A, and its QR factorization.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
Y (input) DOUBLE PRECISION array, dimension ( N*NRHS )
If JOB = 'F', the elements Y(1:(N-RANK)*NRHS) are used as
free elements in computing the solution (see METHOD).
The remaining elements are not referenced.
If JOB = 'L', or NRHS = 0, this array is not referenced.
JPVT (input/output) INTEGER array, dimension (N)
On entry with INIPER = 'P', if JPVT(i) <> 0, the i-th
column of A is an initial column, otherwise it is a free
column. Before the QR factorization of A, all initial
columns are permuted to the leading positions; only the
remaining free columns are moved as a result of column
pivoting during the factorization.
If INIPER = 'N', JPVT need not be set on entry.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
SVAL (output) DOUBLE PRECISION array, dimension ( 3 )
The estimates of some of the singular values of the
triangular factor R11:
SVAL(1): largest singular value of R(1:RANK,1:RANK);
SVAL(2): smallest singular value of R(1:RANK,1:RANK);
SVAL(3): smallest singular value of R(1:RANK+1,1:RANK+1),
if RANK < MIN( M, N ), or of R(1:RANK,1:RANK),
otherwise.
If the triangular factorization is a rank-revealing one
(which will be the case if the leading columns were well-
conditioned), then SVAL(1) will also be an estimate for
the largest singular value of A, and SVAL(2) and SVAL(3)
will be estimates for the RANK-th and (RANK+1)-st singular
values of A, respectively.
By examining these values, one can confirm that the rank
is well defined with respect to the chosen value of RCOND.
The ratio SVAL(1)/SVAL(2) is an estimate of the condition
number of R(1:RANK,1:RANK).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK, and the entries 2 to min(M,N) + RANK + 1
contain the scalar factors of the elementary reflectors
used in the complete orthogonal factorization of A.
Among the entries 2 to min(M,N) + 1, only the first RANK
elements are useful, if INIPER = 'N'.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= max( min(M,N)+3*N+1, 2*min(M,N)+NRHS )
For optimum performance LDWORK should be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
If INIPER = 'P', the routine first computes a QR factorization
with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
If INIPER = 'N', the effective rank is estimated during a
truncated QR factorization (with column pivoting) process, and
the submatrix R22 is not upper triangular, but full and of small
norm. (See SLICOT Library routines MB03OD or MB03OY, respectively,
for further details.)
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ Y ]
where Q1 consists of the first RANK columns of Q, and Y contains
free elements (if JOB = 'F'), or is zero (if JOB = 'L').
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
Significant gain in efficiency is possible for small-rank problems
using truncated QR factorization (option INIPER = 'N').
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB02QD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, NRHSMX
PARAMETER ( NMAX = 20, MMAX = 20, NRHSMX = 20 )
INTEGER LDA, LDB
PARAMETER ( LDA = MMAX, LDB = MAX( MMAX, NMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( MIN( MMAX, NMAX) + 3*NMAX + 1,
$ 2*MIN( MMAX, NMAX) + NRHSMX ) )
* .. Local Scalars ..
DOUBLE PRECISION RCOND, SVLMAX
INTEGER I, INFO, J, M, N, NRHS, RANK
CHARACTER*1 INIPER, JOB
* .. Local Arrays ..
INTEGER JPVT(NMAX)
DOUBLE PRECISION A(LDA,NMAX), B(LDB,NRHSMX), DWORK(LDWORK),
$ SVAL(3), Y(NMAX*NRHSMX)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL MB02QD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, N, NRHS, RCOND, SVLMAX, JOB, INIPER
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) M
ELSE
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) N
ELSE
IF ( NRHS.LT.0 .OR. NRHS.GT.NRHSMX ) THEN
WRITE ( NOUT, FMT = 99992 ) NRHS
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,M )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,NRHS ), I = 1,M )
IF ( LSAME( JOB, 'F' ) )
$ READ ( NIN, FMT = * ) ( Y(I), I = 1,N*NRHS )
IF ( LSAME( INIPER, 'P' ) )
$ READ ( NIN, FMT = * ) ( JPVT(I), I = 1,N )
* Find the least squares solution.
CALL MB02QD( JOB, INIPER, M, N, NRHS, RCOND, SVLMAX, A,
$ LDA, B, LDB, Y, JPVT, RANK, SVAL, DWORK,
$ LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) RANK, SVAL
WRITE ( NOUT, FMT = 99996 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,NRHS )
10 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' MB02QD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02QD =',I2)
99997 FORMAT (' The effective rank of A =',I2,/
$ ' Estimates of the singular values SVAL = '/3(1X,F8.4))
99996 FORMAT (' The least squares solution is')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' M is out of range.',/' M = ',I5)
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' NRHS is out of range.',/' NRHS = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB02QD EXAMPLE PROGRAM DATA
4 3 2 2.3D-16 0.0 L N
2.0 2.0 -3.0
3.0 3.0 -1.0
4.0 4.0 -5.0
-1.0 -1.0 -2.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0
</PRE>
<B>Program Results</B>
<PRE>
MB02QD EXAMPLE PROGRAM RESULTS
The effective rank of A = 2
Estimates of the singular values SVAL =
7.8659 2.6698 0.0000
The least squares solution is
-0.0034 -0.1054
-0.0034 -0.1054
-0.0816 -0.1973
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|