File: MB02TD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (131 lines) | stat: -rw-r--r-- 3,482 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
<HTML>
<HEAD><TITLE>MB02TD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02TD">MB02TD</A></H2>
<H3>
Estimation of the reciprocal condition number of an upper Hessenberg matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To estimate the reciprocal of the condition number of an upper
  Hessenberg matrix H, in either the 1-norm or the infinity-norm,
  using the LU factorization computed by MB02SD.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02TD( NORM, N, HNORM, H, LDH, IPIV, RCOND, IWORK,
     $                   DWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            INFO, LDH, N
      DOUBLE PRECISION   HNORM, RCOND
C     .. Array Arguments ..
      INTEGER            IPIV( * ), IWORK( * )
      DOUBLE PRECISION   DWORK( * ), H( LDH, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  NORM    CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix H.  N &gt;= 0.

  HNORM   (input) DOUBLE PRECISION
          If NORM = '1' or 'O', the 1-norm of the original matrix H.
          If NORM = 'I', the infinity-norm of the original matrix H.

  H       (input) DOUBLE PRECISION array, dimension (LDH,N)
          The factors L and U from the factorization H = P*L*U
          as computed by MB02SD.

  LDH     INTEGER
          The leading dimension of the array H.  LDH &gt;= max(1,N).

  IPIV    (input) INTEGER array, dimension (N)
          The pivot indices; for 1 &lt;= i &lt;= N, row i of the matrix
          was interchanged with row IPIV(i).

  RCOND   (output) DOUBLE PRECISION
          The reciprocal of the condition number of the matrix H,
          computed as RCOND = 1/(norm(H) * norm(inv(H))).

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (3*N)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  An estimate is obtained for norm(inv(H)), and the reciprocal of
  the condition number is computed as
     RCOND = 1 / ( norm(H) * norm(inv(H)) ).

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  -

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                             2
  The algorithm requires 0( N ) operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>