File: MB02UV.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (100 lines) | stat: -rw-r--r-- 3,015 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
<HTML>
<HEAD><TITLE>MB02UV - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02UV">MB02UV</A></H2>
<H3>
LU factorization with complete pivoting of a general matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute an LU factorization, using complete pivoting, of the
  N-by-N matrix A. The factorization has the form A = P * L * U * Q,
  where P and Q are permutation matrices, L is lower triangular with
  unit diagonal elements and U is upper triangular.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02UV( N, A, LDA, IPIV, JPIV, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, N
C     .. Array Arguments ..
      INTEGER            IPIV( * ), JPIV( * )
      DOUBLE PRECISION   A( LDA, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A to be factored.
          On exit, the leading N-by-N part of this array contains
          the factors L and U from the factorization A = P*L*U*Q;
          the unit diagonal elements of L are not stored. If U(k, k)
          appears to be less than SMIN, U(k, k) is given the value
          of SMIN, giving a nonsingular perturbed system.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1, N).

  IPIV    (output) INTEGER array, dimension (N)
          The pivot indices; for 1 &lt;= i &lt;= N, row i of the
          matrix has been interchanged with row IPIV(i).

  JPIV    (output) INTEGER array, dimension (N)
          The pivot indices; for 1 &lt;= j &lt;= N, column j of the
          matrix has been interchanged with column JPIV(j).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          = k:  U(k, k) is likely to produce owerflow if one tries
                to solve for x in Ax = b. So U is perturbed to get
                a nonsingular system. This is a warning.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  In the interests of speed, this routine does not check the input
  for errors. It should only be used to factorize matrices A of
  very small order.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>