1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
<HTML>
<HEAD><TITLE>MB02VD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02VD">MB02VD</A></H2>
<H3>
Solution of linear equations X op(A) = B
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the solution to a real system of linear equations
X * op(A) = B,
where op(A) is either A or its transpose, A is an N-by-N matrix,
and X and B are M-by-N matrices.
The LU decomposition with partial pivoting and row interchanges,
A = P * L * U, is used, where P is a permutation matrix, L is unit
lower triangular, and U is upper triangular.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02VD( TRANS, M, N, A, LDA, IPIV, B, LDB, INFO )
C .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, M, N
C .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TRANS CHARACTER*1
Specifies the form of op(A) to be used as follows:
= 'N': op(A) = A;
= 'T': op(A) = A';
= 'C': op(A) = A'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrix B. M >= 0.
N (input) INTEGER
The number of columns of the matrix B, and the order of
the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the coefficient matrix A.
On exit, the leading N-by-N part of this array contains
the factors L and U from the factorization A = P*L*U;
the unit diagonal elements of L are not stored.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the leading M-by-N part of this array must
contain the right hand side matrix B.
On exit, if INFO = 0, the leading M-by-N part of this
array contains the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M).
INFO (output) INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
> 0: if INFO = i, U(i,i) is exactly zero. The
factorization has been completed, but the factor U
is exactly singular, so the solution could not be
computed.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The LU decomposition with partial pivoting and row interchanges is
used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and
U is upper triangular. The factored form of A is then used to
solve the system of equations X * A = B or X * A' = B.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
This routine enables to solve the system X * A = B or X * A' = B
as easily and efficiently as possible; it is similar to the LAPACK
Library routine DGESV, which solves A * X = B.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB02VD EXAMPLE PROGRAM TEXT
*
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX
PARAMETER ( MMAX = 20, NMAX = 20 )
INTEGER LDA, LDB
PARAMETER ( LDA = NMAX, LDB = MMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, M, N
CHARACTER*1 TRANS
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,NMAX)
INTEGER IPIV(NMAX)
* .. External Subroutines ..
EXTERNAL MB02VD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read in the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, N, TRANS
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,M )
* Solve the linear system using the LU factorization.
CALL MB02VD( TRANS, M, N, A, LDA, IPIV, B, LDB, INFO )
*
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, M
WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,N )
10 CONTINUE
ELSE
WRITE ( NOUT, FMT = 99998 ) INFO
END IF
END IF
END IF
STOP
*
99999 FORMAT (' MB02VD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02VD = ',I2)
99997 FORMAT (' The solution matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' N is out of range.',/' N = ',I5)
99994 FORMAT (/' M is out of range.',/' M = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB02VD EXAMPLE PROGRAM DATA
5 4 N
1. 2. 6. 3.
-2. -1. -1. 0.
2. 3. 1. 5.
1. -1. 2. 0.
0. 0. 0. 1.
5. 5. 1. 5.
-2. 1. 3. 1.
0. 0. 4. 5.
2. 1. 1. 3.
</PRE>
<B>Program Results</B>
<PRE>
MB02VD EXAMPLE PROGRAM RESULTS
The solution matrix is
-0.0690 0.3333 0.2414 0.2529
-0.1724 -1.6667 1.1034 -0.3678
0.9655 0.6667 -0.3793 -0.8736
0.3448 1.6667 0.7931 1.4023
-0.2069 0.0000 0.7241 0.7586
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|