File: MB02XD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (304 lines) | stat: -rw-r--r-- 11,049 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
<HTML>
<HEAD><TITLE>MB02XD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB02XD">MB02XD</A></H2>
<H3>
Solution of A' A X = B, or f(A) X = B, using symmetric Gaussian elimination
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To solve a set of systems of linear equations, A'*A*X = B, or,
  in the implicit form, f(A)*X = B, with A'*A or f(A) positive
  definite, using symmetric Gaussian elimination.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB02XD( FORM, STOR, UPLO, F, M, N, NRHS, IPAR, LIPAR,
     $                   DPAR, LDPAR, A, LDA, B, LDB, ATA, LDATA, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         FORM, STOR, UPLO
      INTEGER           INFO, LDA, LDATA, LDB, LDPAR, LDWORK, LIPAR, M,
     $                  N, NRHS
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), ATA(*), B(LDB,*), DPAR(*), DWORK(*)
      INTEGER           IPAR(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  FORM    CHARACTER*1
          Specifies the form in which the matrix A is provided, as
          follows:
          = 'S' :  standard form, the matrix A is given;
          = 'F' :  the implicit, function form f(A) is provided.
          If FORM = 'F', then the routine F is called to compute the
          matrix A'*A.

  STOR    CHARACTER*1
          Specifies the storage scheme for the symmetric
          matrix A'*A, as follows:
          = 'F' :  full storage is used;
          = 'P' :  packed storage is used.

  UPLO    CHARACTER*1
          Specifies which part of the matrix A'*A is stored, as
          follows:
          = 'U' :  the upper triagular part is stored;
          = 'L' :  the lower triagular part is stored.

</PRE>
<B>Function Parameters</B>
<PRE>
  F       EXTERNAL
          If FORM = 'F', then F is a subroutine which calculates the
          value of f(A) = A'*A, for given A.
          If FORM = 'S', then F is not called.

          F must have the following interface:

          SUBROUTINE F( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR, A,
         $              LDA, ATA, LDATA, DWORK, LDWORK, INFO )

          where

          STOR    (input) CHARACTER*1
                  Specifies the storage scheme for the symmetric
                  matrix A'*A, as follows:
                  = 'F' :  full storage is used;
                  = 'P' :  packed storage is used.

          UPLO    (input) CHARACTER*1
                  Specifies which part of the matrix A'*A is stored,
                  as follows:
                  = 'U' :  the upper triagular part is stored;
                  = 'L' :  the lower triagular part is stored.

          N       (input) INTEGER
                  The order of the matrix A'*A.  N &gt;= 0.

          IPAR    (input) INTEGER array, dimension (LIPAR)
                  The integer parameters describing the structure of
                  the matrix A.

          LIPAR   (input) INTEGER
                  The length of the array IPAR.  LIPAR &gt;= 0.

          DPAR    (input) DOUBLE PRECISION array, dimension (LDPAR)
                  The real parameters needed for solving the
                  problem.

          LDPAR   (input) INTEGER
                  The length of the array DPAR.  LDPAR &gt;= 0.

          A       (input) DOUBLE PRECISION array, dimension
                  (LDA, NC), where NC is the number of columns.
                  The leading NR-by-NC part of this array must
                  contain the (compressed) representation of the
                  matrix A, where NR is the number of rows of A
                  (function of IPAR entries).

          LDA     (input) INTEGER
                  The leading dimension of the array A.
                  LDA &gt;= MAX(1,NR).

          ATA     (output) DOUBLE PRECISION array,
                           dimension (LDATA,N),    if STOR = 'F',
                           dimension (N*(N+1)/2),  if STOR = 'P'.
                  The leading N-by-N (if STOR = 'F'), or N*(N+1)/2
                  (if STOR = 'P') part of this array contains the
                  upper or lower triangle of the matrix A'*A,
                  depending on UPLO = 'U', or UPLO = 'L',
                  respectively, stored either as a two-dimensional,
                  or one-dimensional array, depending on STOR.

          LDATA   (input) INTEGER
                  The leading dimension of the array ATA.
                  LDATA &gt;= MAX(1,N), if STOR = 'F'.
                  LDATA &gt;= 1,        if STOR = 'P'.

          DWORK   DOUBLE PRECISION array, dimension (LDWORK)
                  The workspace array for subroutine F.

          LDWORK  (input) INTEGER
                  The size of the array DWORK (as large as needed
                  in the subroutine F).

          INFO    INTEGER
                  Error indicator, set to a negative value if an
                  input scalar argument is erroneous, and to
                  positive values for other possible errors in the
                  subroutine F. The LAPACK Library routine XERBLA
                  should be used in conjunction with negative INFO.
                  INFO must be zero if the subroutine finished
                  successfully.

          Parameters marked with "(input)" must not be changed.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows of the matrix A.  M &gt;= 0.

  N       (input) INTEGER
          The order of the matrix A'*A, the number of columns of the
          matrix A, and the number of rows of the matrix X.  N &gt;= 0.

  NRHS    (input) INTEGER
          The number of columns of the matrices B and X.  NRHS &gt;= 0.

  IPAR    (input) INTEGER array, dimension (LIPAR)
          If FORM = 'F', the integer parameters describing the
          structure of the matrix A.
          This parameter is ignored if FORM = 'S'.

  LIPAR   (input) INTEGER
          The length of the array IPAR.  LIPAR &gt;= 0.

  DPAR    (input) DOUBLE PRECISION array, dimension (LDPAR)
          If FORM = 'F', the real parameters needed for solving
          the problem.
          This parameter is ignored if FORM = 'S'.

  LDPAR   (input) INTEGER
          The length of the array DPAR.  LDPAR &gt;= 0.

  A       (input) DOUBLE PRECISION array,
                  dimension (LDA, N),  if FORM = 'S',
                  dimension (LDA, NC), if FORM = 'F', where NC is
                  the number of columns.
          If FORM = 'S', the leading M-by-N part of this array
          must contain the matrix A.
          If FORM = 'F', the leading NR-by-NC part of this array
          must contain an appropriate representation of matrix A,
          where NR is the number of rows.
          If FORM = 'F', this array is not referenced by this
          routine itself, except in the call to the routine F.

  LDA     INTEGER
          The leading dimension of array A.
          LDA &gt;= MAX(1,M),  if FORM = 'S';
          LDA &gt;= MAX(1,NR), if FORM = 'F'.

  B       (input/output) DOUBLE PRECISION array, dimension
          (LDB, NRHS)
          On entry, the leading N-by-NRHS part of this array must
          contain the right hand side matrix B.
          On exit, if INFO = 0 and M (or NR) is nonzero, the leading
          N-by-NRHS part of this array contains the solution X of
          the set of systems of linear equations A'*A*X = B or
          f(A)*X = B. If M (or NR) is zero, then B is unchanged.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  ATA     (output) DOUBLE PRECISION array,
                   dimension (LDATA,N),    if STOR = 'F',
                   dimension (N*(N+1)/2),  if STOR = 'P'.
          The leading N-by-N (if STOR = 'F'), or N*(N+1)/2 (if
          STOR = 'P') part of this array contains the upper or lower
          triangular Cholesky factor of the matrix A'*A, depending
          on UPLO = 'U', or UPLO = 'L', respectively, stored either
          as a two-dimensional, or one-dimensional array, depending
          on STOR.

  LDATA   INTEGER
          The leading dimension of the array ATA.
          LDATA &gt;= MAX(1,N), if STOR = 'F'.
          LDATA &gt;= 1,        if STOR = 'P'.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)

  LDWORK  INTEGER
          The length of the array DWORK.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          &gt; 0:  if INFO = i, then the (i,i) element of the
                triangular factor of the matrix A'*A is exactly
                zero (the matrix A'*A is exactly singular);
                if INFO = j &gt; n, then F returned with INFO = j-n.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The matrix A'*A is built either directly (if FORM = 'S'), or
  implicitly, by calling the routine F. Then, A'*A is Cholesky
  factored and its factor is used to solve the set of systems of
  linear equations, A'*A*X = B.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Golub, G.H. and van Loan, C.F.
      Matrix Computations. Third Edition.
      M. D. Johns Hopkins University Press, Baltimore, 1996.

  [2] Anderson, E., Bai, Z., Bischof, C., Blackford, Demmel, J.,
      Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
      McKenney, A., Sorensen, D.
      LAPACK Users' Guide: Third Edition, SIAM, Philadelphia, 1999.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  For speed, this routine does not check for near singularity of the
  matrix A'*A. If the matrix A is nearly rank deficient, then the
  computed X could be inaccurate. Estimates of the reciprocal
  condition numbers of the matrices A and A'*A can be obtained
  using LAPACK routines DGECON and DPOCON (DPPCON), respectively.

  The approximate number of floating point operations is
     (M+3)*N**2/2 + N**3/6 + NRHS*N**2, if FORM = 'S',
     f + N**3/6 + NRHS*N**2,            if FORM = 'F',
  where M is the number of rows of A, and f is the number of
  floating point operations required by the subroutine F.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>