1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
<HTML>
<HEAD><TITLE>MB02XD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB02XD">MB02XD</A></H2>
<H3>
Solution of A' A X = B, or f(A) X = B, using symmetric Gaussian elimination
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve a set of systems of linear equations, A'*A*X = B, or,
in the implicit form, f(A)*X = B, with A'*A or f(A) positive
definite, using symmetric Gaussian elimination.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB02XD( FORM, STOR, UPLO, F, M, N, NRHS, IPAR, LIPAR,
$ DPAR, LDPAR, A, LDA, B, LDB, ATA, LDATA, DWORK,
$ LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER FORM, STOR, UPLO
INTEGER INFO, LDA, LDATA, LDB, LDPAR, LDWORK, LIPAR, M,
$ N, NRHS
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ATA(*), B(LDB,*), DPAR(*), DWORK(*)
INTEGER IPAR(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
FORM CHARACTER*1
Specifies the form in which the matrix A is provided, as
follows:
= 'S' : standard form, the matrix A is given;
= 'F' : the implicit, function form f(A) is provided.
If FORM = 'F', then the routine F is called to compute the
matrix A'*A.
STOR CHARACTER*1
Specifies the storage scheme for the symmetric
matrix A'*A, as follows:
= 'F' : full storage is used;
= 'P' : packed storage is used.
UPLO CHARACTER*1
Specifies which part of the matrix A'*A is stored, as
follows:
= 'U' : the upper triagular part is stored;
= 'L' : the lower triagular part is stored.
</PRE>
<B>Function Parameters</B>
<PRE>
F EXTERNAL
If FORM = 'F', then F is a subroutine which calculates the
value of f(A) = A'*A, for given A.
If FORM = 'S', then F is not called.
F must have the following interface:
SUBROUTINE F( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR, A,
$ LDA, ATA, LDATA, DWORK, LDWORK, INFO )
where
STOR (input) CHARACTER*1
Specifies the storage scheme for the symmetric
matrix A'*A, as follows:
= 'F' : full storage is used;
= 'P' : packed storage is used.
UPLO (input) CHARACTER*1
Specifies which part of the matrix A'*A is stored,
as follows:
= 'U' : the upper triagular part is stored;
= 'L' : the lower triagular part is stored.
N (input) INTEGER
The order of the matrix A'*A. N >= 0.
IPAR (input) INTEGER array, dimension (LIPAR)
The integer parameters describing the structure of
the matrix A.
LIPAR (input) INTEGER
The length of the array IPAR. LIPAR >= 0.
DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
The real parameters needed for solving the
problem.
LDPAR (input) INTEGER
The length of the array DPAR. LDPAR >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA, NC), where NC is the number of columns.
The leading NR-by-NC part of this array must
contain the (compressed) representation of the
matrix A, where NR is the number of rows of A
(function of IPAR entries).
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= MAX(1,NR).
ATA (output) DOUBLE PRECISION array,
dimension (LDATA,N), if STOR = 'F',
dimension (N*(N+1)/2), if STOR = 'P'.
The leading N-by-N (if STOR = 'F'), or N*(N+1)/2
(if STOR = 'P') part of this array contains the
upper or lower triangle of the matrix A'*A,
depending on UPLO = 'U', or UPLO = 'L',
respectively, stored either as a two-dimensional,
or one-dimensional array, depending on STOR.
LDATA (input) INTEGER
The leading dimension of the array ATA.
LDATA >= MAX(1,N), if STOR = 'F'.
LDATA >= 1, if STOR = 'P'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
The workspace array for subroutine F.
LDWORK (input) INTEGER
The size of the array DWORK (as large as needed
in the subroutine F).
INFO INTEGER
Error indicator, set to a negative value if an
input scalar argument is erroneous, and to
positive values for other possible errors in the
subroutine F. The LAPACK Library routine XERBLA
should be used in conjunction with negative INFO.
INFO must be zero if the subroutine finished
successfully.
Parameters marked with "(input)" must not be changed.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The order of the matrix A'*A, the number of columns of the
matrix A, and the number of rows of the matrix X. N >= 0.
NRHS (input) INTEGER
The number of columns of the matrices B and X. NRHS >= 0.
IPAR (input) INTEGER array, dimension (LIPAR)
If FORM = 'F', the integer parameters describing the
structure of the matrix A.
This parameter is ignored if FORM = 'S'.
LIPAR (input) INTEGER
The length of the array IPAR. LIPAR >= 0.
DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
If FORM = 'F', the real parameters needed for solving
the problem.
This parameter is ignored if FORM = 'S'.
LDPAR (input) INTEGER
The length of the array DPAR. LDPAR >= 0.
A (input) DOUBLE PRECISION array,
dimension (LDA, N), if FORM = 'S',
dimension (LDA, NC), if FORM = 'F', where NC is
the number of columns.
If FORM = 'S', the leading M-by-N part of this array
must contain the matrix A.
If FORM = 'F', the leading NR-by-NC part of this array
must contain an appropriate representation of matrix A,
where NR is the number of rows.
If FORM = 'F', this array is not referenced by this
routine itself, except in the call to the routine F.
LDA INTEGER
The leading dimension of array A.
LDA >= MAX(1,M), if FORM = 'S';
LDA >= MAX(1,NR), if FORM = 'F'.
B (input/output) DOUBLE PRECISION array, dimension
(LDB, NRHS)
On entry, the leading N-by-NRHS part of this array must
contain the right hand side matrix B.
On exit, if INFO = 0 and M (or NR) is nonzero, the leading
N-by-NRHS part of this array contains the solution X of
the set of systems of linear equations A'*A*X = B or
f(A)*X = B. If M (or NR) is zero, then B is unchanged.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
ATA (output) DOUBLE PRECISION array,
dimension (LDATA,N), if STOR = 'F',
dimension (N*(N+1)/2), if STOR = 'P'.
The leading N-by-N (if STOR = 'F'), or N*(N+1)/2 (if
STOR = 'P') part of this array contains the upper or lower
triangular Cholesky factor of the matrix A'*A, depending
on UPLO = 'U', or UPLO = 'L', respectively, stored either
as a two-dimensional, or one-dimensional array, depending
on STOR.
LDATA INTEGER
The leading dimension of the array ATA.
LDATA >= MAX(1,N), if STOR = 'F'.
LDATA >= 1, if STOR = 'P'.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
> 0: if INFO = i, then the (i,i) element of the
triangular factor of the matrix A'*A is exactly
zero (the matrix A'*A is exactly singular);
if INFO = j > n, then F returned with INFO = j-n.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrix A'*A is built either directly (if FORM = 'S'), or
implicitly, by calling the routine F. Then, A'*A is Cholesky
factored and its factor is used to solve the set of systems of
linear equations, A'*A*X = B.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Golub, G.H. and van Loan, C.F.
Matrix Computations. Third Edition.
M. D. Johns Hopkins University Press, Baltimore, 1996.
[2] Anderson, E., Bai, Z., Bischof, C., Blackford, Demmel, J.,
Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., Sorensen, D.
LAPACK Users' Guide: Third Edition, SIAM, Philadelphia, 1999.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
For speed, this routine does not check for near singularity of the
matrix A'*A. If the matrix A is nearly rank deficient, then the
computed X could be inaccurate. Estimates of the reciprocal
condition numbers of the matrices A and A'*A can be obtained
using LAPACK routines DGECON and DPOCON (DPPCON), respectively.
The approximate number of floating point operations is
(M+3)*N**2/2 + N**3/6 + NRHS*N**2, if FORM = 'S',
f + N**3/6 + NRHS*N**2, if FORM = 'F',
where M is the number of rows of A, and f is the number of
floating point operations required by the subroutine F.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|