File: MB03BF.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (106 lines) | stat: -rw-r--r-- 3,090 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
<HTML>
<HEAD><TITLE>MB03BF - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03BF">MB03BF</A></H2>
<H3>
Applying iterations of a real single shifted periodic QZ algorithm to a 2-by-2 matrix product, with Hessenberg factor the last one
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To apply at most 20 iterations of a real single shifted
  periodic QZ algorithm to the 2-by-2 product of matrices stored
  in the array A. The Hessenberg matrix is the last one of the
  formal matrix product.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03BF( K, AMAP, S, SINV, A, LDA1, LDA2, ULP )
C     .. Scalar Arguments ..
      INTEGER           K, LDA1, LDA2, SINV
      DOUBLE PRECISION  ULP
C     .. Array Arguments ..
      INTEGER           AMAP(*), S(*)
      DOUBLE PRECISION  A(LDA1,LDA2,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  K       (input)  INTEGER
          The number of factors.  K &gt;= 1.

  AMAP    (input)  INTEGER array, dimension (K)
          The map for accessing the factors, i.e., if AMAP(I) = J,
          then the factor A_I is stored at the J-th position in A.

  S       (input)  INTEGER array, dimension (K)
          The signature array. Each entry of S must be 1 or -1.

  SINV    (input)  INTEGER
          Signature multiplier. Entries of S are virtually
          multiplied by SINV.

  A       (input/output)  DOUBLE PRECISION array, dimension
                          (LDA1,LDA2,K)
          On entry, the leading 2-by-2-by-K part of this array must
          contain a 2-by-2 product (implicitly represented by its K
          factors) in upper Hessenberg form. The Hessenberg matrix
          is the last one of the formal matrix product.
          On exit, the leading 2-by-2-by-K part of this array
          contains the product after at most 20 iterations of a real
          shifted periodic QZ algorithm.

  LDA1    INTEGER
          The first leading dimension of the array A.  LDA1 &gt;= 2.

  LDA2    INTEGER
          The second leading dimension of the array A.  LDA2 &gt;= 2.

  ULP     INTEGER
          The machine relation precision.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Twenty iterations of a real single shifted periodic QZ algorithm
  are applied to the 2-by-2 matrix product A.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>