1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
<HTML>
<HEAD><TITLE>MB03BZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03BZ">MB03BZ</A></H2>
<H3>
Finding eigenvalues of a complex generalized matrix product in Hessenberg-triangular form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To find the eigenvalues of the complex generalized matrix product
S(1) S(2) S(K)
A(:,:,1) * A(:,:,2) * ... * A(:,:,K) , S(1) = 1,
where A(:,:,1) is upper Hessenberg and A(:,:,i) is upper
triangular, i = 2, ..., K, using a single-shift version of the
periodic QZ method. In addition, A may be reduced to periodic
Schur form by unitary transformations: all factors A(:,:,i) become
upper triangular.
If COMPQ = 'V' or COMPQ = 'I', then the unitary factors are
computed and stored in the array Q so that for S(I) = 1,
H
Q(:,:,I)(in) A(:,:,I)(in) Q(:,:,MOD(I,K)+1)(in)
H (1)
= Q(:,:,I)(out) A(:,:,I)(out) Q(:,:,MOD(I,K)+1)(out),
and for S(I) = -1,
H
Q(:,:,MOD(I,K)+1)(in) A(:,:,I)(in) Q(:,:,I)(in)
H (2)
= Q(:,:,MOD(I,K)+1)(out) A(:,:,I)(out) Q(:,:,I)(out).
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03BZ( JOB, COMPQ, K, N, ILO, IHI, S, A, LDA1, LDA2,
$ Q, LDQ1, LDQ2, ALPHA, BETA, SCAL, DWORK,
$ LDWORK, ZWORK, LZWORK, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ, JOB
INTEGER IHI, ILO, INFO, K, LDA1, LDA2, LDQ1, LDQ2,
$ LDWORK, LZWORK, N
C .. Array Arguments ..
INTEGER S(*), SCAL(*)
DOUBLE PRECISION DWORK(*)
COMPLEX*16 A(LDA1, LDA2, *), ALPHA(*), BETA(*),
$ Q(LDQ1, LDQ2, *), ZWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies the computation to be performed, as follows:
= 'E': compute the eigenvalues only; A will not
necessarily be put into periodic Schur form;
= 'S': put A into periodic Schur form, and return the
eigenvalues in ALPHA, BETA, and SCAL.
COMPQ CHARACTER*1
Specifies whether or not the unitary transformations
should be accumulated in the array Q, as follows:
= 'N': do not modify Q;
= 'V': modify the array Q by the unitary transformations
that are applied to the matrices in the array A to
reduce them to periodic Schur form;
= 'I': like COMPQ = 'V', except that each matrix in the
array Q will be first initialized to the identity
matrix.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
K (input) INTEGER
The number of factors. K >= 1.
N (input) INTEGER
The order of each factor in the array A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that each factor in A is already upper
triangular in rows and columns 1:ILO-1 and IHI+1:N.
1 <= ILO <= IHI <= N, if N > 0;
ILO = 1 and IHI = 0, if N = 0.
S (input) INTEGER array, dimension (K)
The leading K elements of this array must contain the
signatures of the factors. Each entry in S must be either
1 or -1. By definition, S(1) must be set to 1.
A (input/output) COMPLEX*16 array, dimension (LDA1,LDA2,K)
On entry, the leading N-by-N-by-K part of this array
must contain the factors in upper Hessenberg-triangular
form, that is, A(:,:,1) is upper Hessenberg and the other
factors are upper triangular.
On exit, if JOB = 'S' and INFO = 0, the leading
N-by-N-by-K part of this array contains the factors of
A in periodic Schur form. All factors are reduced to
upper triangular form and, moreover, A(:,:,2), ...,
A(:,:,K) are normalized so that their diagonals contain
nonnegative real numbers.
On exit, if JOB = 'E', then the leading N-by-N-by-K part
of this array contains meaningless elements.
LDA1 INTEGER
The first leading dimension of the array A.
LDA1 >= MAX(1,N).
LDA2 INTEGER
The second leading dimension of the array A.
LDA2 >= MAX(1,N).
Q (input/output) COMPLEX*16 array, dimension (LDQ1,LDQ2,K)
On entry, if COMPQ = 'V', the leading N-by-N-by-K part
of this array must contain the initial unitary factors
as described in (1) and (2).
On exit, if COMPQ = 'V' or COMPQ = 'I', the leading
N-by-N-by-K part of this array contains the modified
unitary factors as described in (1) and (2).
This array is not referenced if COMPQ = 'N'.
LDQ1 INTEGER
The first leading dimension of the array Q. LDQ1 >= 1,
and, if COMPQ <> 'N', LDQ1 >= MAX(1,N).
LDQ2 INTEGER
The second leading dimension of the array Q. LDQ2 >= 1,
and, if COMPQ <> 'N', LDQ2 >= MAX(1,N).
ALPHA (output) COMPLEX*16 array, dimension (N)
On exit, if INFO = 0, the leading N elements of this
array contain the scaled eigenvalues of the matrix
product A. The i-th eigenvalue of A is given by
ALPHA(I) / BETA(I) * BASE**(SCAL(I)),
where ABS(ALPHA(I)) = 0.0 or 1.0 <= ABS(ALPHA(I)) < BASE,
and BASE is the machine base (normally 2.0).
BETA (output) COMPLEX*16 array, dimension (N)
On exit, if INFO = 0, the leading N elements of this
array contain indicators for infinite eigenvalues. That
is, if BETA(I) = 0.0, then the i-th eigenvalue is
infinite. Otherwise BETA(I) is set to 1.0.
SCAL (output) INTEGER array, dimension (N)
On exit, if INFO = 0, the leading N elements of this
array contain the scaling parameters for the eigenvalues
of A.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the minimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= MAX(1,N).
ZWORK COMPLEX*16 array, dimension (LZWORK)
On exit, if INFO = 0, ZWORK(1) returns the minimal value
of LZWORK.
LZWORK INTEGER
The length of the array ZWORK. LZWORK >= MAX(1,N).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0 : succesful exit;
< 0 : if INFO = -i, the i-th argument had an illegal
value;
= 1,..,N : the periodic QZ iteration did not converge.
A is not in periodic Schur form, but
ALPHA(I), BETA(I), and SCAL(I), for
I = INFO+1,...,N should be correct.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
A slightly modified version of the periodic QZ algorithm is
used. For more details, see [2].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Bojanczyk, A., Golub, G. H. and Van Dooren, P.
The periodic Schur decomposition: algorithms and applications.
In F.T. Luk (editor), Advanced Signal Processing Algorithms,
Architectures, and Implementations III, Proc. SPIE Conference,
vol. 1770, pp. 31-42, 1992.
[2] Kressner, D.
An efficient and reliable implementation of the periodic QZ
algorithm. IFAC Workshop on Periodic Control Systems (PSYCO
2001), Como (Italy), August 27-28 2001. Periodic Control
Systems 2001 (IFAC Proceedings Volumes), Pergamon.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented method is numerically backward stable.
3
The algorithm requires 0(K N ) floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB03BZ EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER KMAX, NMAX
PARAMETER ( KMAX = 6, NMAX = 50 )
INTEGER LDA1, LDA2, LDQ1, LDQ2, LDWORK, LZWORK
PARAMETER ( LDA1 = NMAX, LDA2 = NMAX, LDQ1 = NMAX,
$ LDQ2 = NMAX, LDWORK = NMAX, LZWORK = NMAX )
*
* .. Local Scalars ..
CHARACTER COMPQ, JOB
INTEGER I, IHI, ILO, INFO, J, K, L, N
*
* .. Local Arrays ..
COMPLEX*16 A( LDA1, LDA2, KMAX ), ALPHA( NMAX ),
$ BETA( NMAX ), Q( LDQ1, LDQ2, KMAX ),
$ ZWORK( LZWORK )
DOUBLE PRECISION DWORK( LDWORK)
INTEGER S( KMAX ), SCAL( NMAX )
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
*
* .. External Subroutines ..
EXTERNAL MB03BZ
*
* .. Executable Statements ..
*
WRITE( NOUT, FMT = 99999 )
* Skip the heading in the data file and read in the data.
READ( NIN, FMT = * )
READ( NIN, FMT = * ) JOB, COMPQ, K, N, ILO, IHI
IF( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE( NOUT, FMT = 99998 ) N
ELSE
READ( NIN, FMT = * ) ( S( I ), I = 1, K )
READ( NIN, FMT = * ) ( ( ( A( I, J, L ), J = 1, N ),
$ I = 1, N ), L = 1, K )
IF( LSAME( COMPQ, 'V' ) )
$ READ( NIN, FMT = * ) ( ( ( Q( I, J, L ), J = 1, N ),
$ I = 1, N ), L = 1, K )
* Compute the eigenvalues and the transformed matrices, if
* required.
CALL MB03BZ( JOB, COMPQ, K, N, ILO, IHI, S, A, LDA1, LDA2,
$ Q, LDQ1, LDQ2, ALPHA, BETA, SCAL, DWORK, LDWORK,
$ ZWORK, LZWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE( NOUT, FMT = 99997 ) INFO
ELSE
IF( LSAME( JOB, 'S' ) ) THEN
WRITE( NOUT, FMT = 99996 )
DO 20 L = 1, K
WRITE( NOUT, FMT = 99995 ) L
DO 10 I = 1, N
WRITE( NOUT, FMT = 99994 ) ( A( I, J, L ), J = 1, N
$ )
10 CONTINUE
20 CONTINUE
END IF
IF( .NOT.LSAME( COMPQ, 'N' ) ) THEN
WRITE( NOUT, FMT = 99993 )
DO 40 L = 1, K
WRITE( NOUT, FMT = 99995 ) L
DO 30 I = 1, N
WRITE( NOUT, FMT = 99994 ) ( Q( I, J, L ), J = 1, N
$ )
30 CONTINUE
40 CONTINUE
END IF
WRITE( NOUT, FMT = 99992 )
WRITE( NOUT, FMT = 99994 ) ( ALPHA( I ), I = 1, N )
WRITE( NOUT, FMT = 99991 )
WRITE( NOUT, FMT = 99994 ) ( BETA( I ), I = 1, N )
WRITE( NOUT, FMT = 99990 )
WRITE( NOUT, FMT = 99989 ) ( SCAL( I ), I = 1, N )
END IF
END IF
STOP
*
99999 FORMAT( 'MB03BZ EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT( 'INFO on exit from MB03BZ = ', I2 )
99996 FORMAT(/'The matrix A on exit is ' )
99995 FORMAT( 'The factor ', I2, ' is ' )
99994 FORMAT( 50( 1X, F9.4, SP, F9.4, S, 'i ') )
99993 FORMAT(/'The matrix Q on exit is ' )
99992 FORMAT(/'The vector ALPHA is ' )
99991 FORMAT( 'The vector BETA is ' )
99990 FORMAT( 'The vector SCAL is ' )
99989 FORMAT( 50( 1X, I8 ) )
END
</PRE>
<B>Program Data</B>
<PRE>
MB03BZ EXAMPLE PROGRAM DATA
S I 3 4 1 4
1 -1 1
(0.8637,0.9326) (0.8819,0.4850) (0.5920,0.8826) (0.8991,0.9040)
(0.6994,0.8588) (0.9527,0.2672) (0.5087,0.0621) (0.9653,0.5715)
0 (0.1561,0.1898) (0.9514,0.9266) (0.6582,0.3102)
0 0 (0.8649,0.1265) (0.1701,0.0013)
(0.5113,0.7375) (0.6869,0.7692) (0.7812,0.1467) (0.7216,0.9498)
0 (0.1319,0.9137) (0.5879,0.0201) (0.9834,0.0549)
0 0 (0.7711,0.2422) (0.9468,0.3280)
0 0 0 (0.2219,0.3971)
(0.0158,0.4042) (0.0082,0.2033) (0.1028,0.9913) (0.6954,0.1987)
0 (0.5066,0.4587) (0.1060,0.6949) (0.5402,0.0970)
0 0 (0.4494,0.3700) (0.8492,0.4882)
0 0 0 (0.2110,0.5824)
</PRE>
<B>Program Results</B>
<PRE>
MB03BZ EXAMPLE PROGRAM RESULTS
The matrix A on exit is
The factor 1 is
0.6053 +1.0311i -1.7227 -0.5753i 1.2428 -1.2632i 0.9445 -0.4317i
0.0000 +0.0000i -0.2596 +1.0235i 0.4673 -0.2403i -0.5579 -1.1564i
0.0000 +0.0000i 0.0000 +0.0000i -0.3336 -0.3367i 0.0687 +0.0261i
0.0000 +0.0000i 0.0000 +0.0000i 0.0000 +0.0000i -0.2014 +0.0057i
The factor 2 is
1.1118 +0.0000i -1.4173 +1.1607i 0.3271 -0.5800i 0.5291 -0.6341i
0.0000 +0.0000i 0.9051 +0.0000i 0.1710 +0.1014i -0.2696 -0.3549i
0.0000 +0.0000i 0.0000 +0.0000i 0.3599 +0.0000i 0.0231 -0.5865i
0.0000 +0.0000i 0.0000 +0.0000i 0.0000 +0.0000i 0.8410 +0.0000i
The factor 3 is
1.1554 +0.0000i -0.7577 +0.0825i 0.1284 -0.0063i 1.1175 -0.0778i
0.0000 +0.0000i 0.5216 +0.0000i -0.5761 +0.2972i -0.3534 -0.3595i
0.0000 +0.0000i 0.0000 +0.0000i 0.2750 +0.0000i 0.2587 -0.1664i
0.0000 +0.0000i 0.0000 +0.0000i 0.0000 +0.0000i 0.6015 +0.0000i
The matrix Q on exit is
The factor 1 is
0.6033 -0.4021i 0.3478 -0.1834i -0.0029 -0.4458i -0.3157 +0.1462i
0.1519 -0.3002i 0.6010 +0.1411i 0.0134 +0.5692i 0.4223 -0.0574i
0.1002 -0.5387i -0.4199 +0.3933i 0.1148 +0.2694i -0.3713 -0.3810i
-0.0599 -0.2395i -0.0968 +0.3521i 0.2342 -0.5801i 0.6247 -0.1555i
The factor 2 is
0.3325 +0.6289i 0.0930 +0.3421i -0.1849 -0.1715i -0.5470 -0.0734i
0.3247 -0.4396i 0.1766 -0.1691i 0.2307 -0.3746i -0.2617 -0.6160i
0.2180 -0.2074i -0.3853 +0.1978i -0.6852 +0.2781i 0.1492 -0.3909i
-0.0268 -0.3223i -0.0623 +0.7893i 0.0957 -0.4323i 0.1716 +0.2072i
The factor 3 is
0.6791 +0.1138i 0.0183 +0.2703i 0.3289 -0.2770i -0.2355 -0.4605i
0.5111 -0.1775i 0.3990 +0.1941i -0.0851 +0.4779i 0.4563 +0.2580i
0.2687 -0.3788i -0.7974 -0.0691i -0.2836 +0.1192i 0.1765 -0.1340i
0.1098 -0.0739i -0.2845 -0.0903i 0.6651 +0.2062i -0.2810 +0.5741i
The vector ALPHA is
0.6290 +1.0715i -0.2992 +1.1797i -1.0195 -1.0290i -1.1523 +0.0326i
The vector BETA is
1.0000 +0.0000i 1.0000 +0.0000i 1.0000 +0.0000i 1.0000 +0.0000i
The vector SCAL is
0 -1 -2 -3
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|