1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
<HTML>
<HEAD><TITLE>MB03CZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03CZ">MB03CZ</A></H2>
<H3>
Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute unitary matrices Q1, Q2, and Q3 for a complex 2-by-2
regular pencil aAB - bD, with A, B, D upper triangular, such that
Q3' A Q2, Q2' B Q1, Q3' D Q1 are still upper triangular, but the
eigenvalues are in reversed order. The matrices Q1, Q2, and Q3 are
represented by
( CO1 SI1 ) ( CO2 SI2 ) ( CO3 SI3 )
Q1 = ( ), Q2 = ( ), Q3 = ( ).
( -SI1' CO1 ) ( -SI2' CO2 ) ( -SI3' CO3 )
The notation M' denotes the conjugate transpose of the matrix M.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03CZ( A, LDA, B, LDB, D, LDD, CO1, SI1, CO2, SI2,
$ CO3, SI3 )
C .. Scalar Arguments ..
INTEGER LDA, LDB, LDD
DOUBLE PRECISION CO1, CO2, CO3
COMPLEX*16 SI1, SI2, SI3
C .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), D( LDD, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
A (input) COMPLEX*16 array, dimension (LDA, 2)
On entry, the leading 2-by-2 upper triangular part of
this array must contain the matrix A of the pencil.
The (2,1) entry is not referenced.
LDA INTEGER
The leading dimension of the array A. LDA >= 2.
B (input) COMPLEX*16 array, dimension (LDB, 2)
On entry, the leading 2-by-2 upper triangular part of
this array must contain the matrix B of the pencil.
The (2,1) entry is not referenced.
LDB INTEGER
The leading dimension of the array B. LDB >= 2.
D (input) COMPLEX*16 array, dimension (LDD, 2)
On entry, the leading 2-by-2 upper triangular part of
this array must contain the matrix D of the pencil.
The (2,1) entry is not referenced.
LDD INTEGER
The leading dimension of the array D. LDD >= 2.
CO1 (output) DOUBLE PRECISION
The upper left element of the unitary matrix Q1.
SI1 (output) COMPLEX*16
The upper right element of the unitary matrix Q1.
CO2 (output) DOUBLE PRECISION
The upper left element of the unitary matrix Q2.
SI2 (output) COMPLEX*16
The upper right element of the unitary matrix Q2.
CO3 (output) DOUBLE PRECISION
The upper left element of the unitary matrix Q3.
SI3 (output) COMPLEX*16
The upper right element of the unitary matrix Q3.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm uses unitary transformations as described on page 37
in [1].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
Numerical Computation of Deflating Subspaces of Embedded
Hamiltonian Pencils.
Tech. Rep. SFB393/99-15, Technical University Chemnitz,
Germany, June 1999.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is numerically backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|