File: MB03CZ.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (137 lines) | stat: -rw-r--r-- 4,103 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
<HTML>
<HEAD><TITLE>MB03CZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03CZ">MB03CZ</A></H2>
<H3>
Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute unitary matrices Q1, Q2, and Q3 for a complex 2-by-2
  regular pencil aAB - bD, with A, B, D upper triangular, such that
  Q3' A Q2, Q2' B Q1, Q3' D Q1 are still upper triangular, but the
  eigenvalues are in reversed order. The matrices Q1, Q2, and Q3 are
  represented by

       (  CO1  SI1  )       (  CO2  SI2  )       (  CO3  SI3  )
  Q1 = (            ), Q2 = (            ), Q3 = (            ).
       ( -SI1' CO1  )       ( -SI2' CO2  )       ( -SI3' CO3  )

  The notation M' denotes the conjugate transpose of the matrix M.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03CZ( A, LDA, B, LDB, D, LDD, CO1, SI1, CO2, SI2,
     $                   CO3, SI3 )
C     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LDD
      DOUBLE PRECISION   CO1, CO2, CO3
      COMPLEX*16         SI1, SI2, SI3
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), D( LDD, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  A       (input) COMPLEX*16 array, dimension (LDA, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix A of the pencil.
          The (2,1) entry is not referenced.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= 2.

  B       (input) COMPLEX*16 array, dimension (LDB, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix B of the pencil.
          The (2,1) entry is not referenced.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= 2.

  D       (input) COMPLEX*16 array, dimension (LDD, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix D of the pencil.
          The (2,1) entry is not referenced.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= 2.

  CO1     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q1.

  SI1     (output) COMPLEX*16
          The upper right element of the unitary matrix Q1.

  CO2     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q2.

  SI2     (output) COMPLEX*16
          The upper right element of the unitary matrix Q2.

  CO3     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q3.

  SI3     (output) COMPLEX*16
          The upper right element of the unitary matrix Q3.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses unitary transformations as described on page 37
  in [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>