File: MB03DZ.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (121 lines) | stat: -rw-r--r-- 3,424 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
<HTML>
<HEAD><TITLE>MB03DZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03DZ">MB03DZ</A></H2>
<H3>
Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute unitary matrices Q1 and Q2 for a complex 2-by-2 regular
  pencil aA - bB with A, B upper triangular, such that
  Q2' (aA - bB) Q1 is still upper triangular but the eigenvalues are
  in reversed order. The matrices Q1 and Q2 are represented by

       (  CO1  SI1  )       (  CO2  SI2  )
  Q1 = (            ), Q2 = (            ).
       ( -SI1' CO1  )       ( -SI2' CO2  )

  The notation M' denotes the conjugate transpose of the matrix M.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03DZ( A, LDA, B, LDB, CO1, SI1, CO2, SI2 )
C     .. Scalar Arguments ..
      INTEGER            LDA, LDB
      DOUBLE PRECISION   CO1, CO2
      COMPLEX*16         SI1, SI2
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  A       (input) COMPLEX*16 array, dimension (LDA, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix A of the pencil.
          The (2,1) entry is not referenced.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= 2.

  B       (input) COMPLEX*16 array, dimension (LDB, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix B of the pencil.
          The (2,1) entry is not referenced.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= 2.

  CO1     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q1.

  SI1     (output) COMPLEX*16
          The upper right element of the unitary matrix Q1.

  CO2     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q2.

  SI2     (output) COMPLEX*16
          The upper right element of the unitary matrix Q2.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses unitary transformations as described on page 42
  in [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>