1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
<HTML>
<HEAD><TITLE>MB03DZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03DZ">MB03DZ</A></H2>
<H3>
Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute unitary matrices Q1 and Q2 for a complex 2-by-2 regular
pencil aA - bB with A, B upper triangular, such that
Q2' (aA - bB) Q1 is still upper triangular but the eigenvalues are
in reversed order. The matrices Q1 and Q2 are represented by
( CO1 SI1 ) ( CO2 SI2 )
Q1 = ( ), Q2 = ( ).
( -SI1' CO1 ) ( -SI2' CO2 )
The notation M' denotes the conjugate transpose of the matrix M.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03DZ( A, LDA, B, LDB, CO1, SI1, CO2, SI2 )
C .. Scalar Arguments ..
INTEGER LDA, LDB
DOUBLE PRECISION CO1, CO2
COMPLEX*16 SI1, SI2
C .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
A (input) COMPLEX*16 array, dimension (LDA, 2)
On entry, the leading 2-by-2 upper triangular part of
this array must contain the matrix A of the pencil.
The (2,1) entry is not referenced.
LDA INTEGER
The leading dimension of the array A. LDA >= 2.
B (input) COMPLEX*16 array, dimension (LDB, 2)
On entry, the leading 2-by-2 upper triangular part of
this array must contain the matrix B of the pencil.
The (2,1) entry is not referenced.
LDB INTEGER
The leading dimension of the array B. LDB >= 2.
CO1 (output) DOUBLE PRECISION
The upper left element of the unitary matrix Q1.
SI1 (output) COMPLEX*16
The upper right element of the unitary matrix Q1.
CO2 (output) DOUBLE PRECISION
The upper left element of the unitary matrix Q2.
SI2 (output) COMPLEX*16
The upper right element of the unitary matrix Q2.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm uses unitary transformations as described on page 42
in [1].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
Numerical Computation of Deflating Subspaces of Embedded
Hamiltonian Pencils.
Tech. Rep. SFB393/99-15, Technical University Chemnitz,
Germany, June 1999.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is numerically backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|