File: MB03GD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (152 lines) | stat: -rw-r--r-- 4,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
<HTML>
<HEAD><TITLE>MB03GD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03GD">MB03GD</A></H2>
<H3>
Exchanging eigenvalues of a real 2-by-2 or 4-by-4 block upper triangular skew-Hamiltonian/Hamiltonian pencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute an orthogonal matrix Q and an orthogonal symplectic
  matrix U for a real regular 2-by-2 or 4-by-4 skew-Hamiltonian/
  Hamiltonian pencil a J B' J' B - b D with

        ( B11  B12 )      (  D11  D12  )      (  0  I  )
    B = (          ), D = (            ), J = (        ),
        (  0   B22 )      (   0  -D11' )      ( -I  0  )

  such that J Q' J' D Q and U' B Q keep block triangular form, but
  the eigenvalues are reordered. The notation M' denotes the
  transpose of the matrix M.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03GD( N, B, LDB, D, LDD, MACPAR, Q, LDQ, U, LDU,
     $                   DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDB, LDD, LDQ, LDU, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION   B( LDB, * ), D( LDD, * ), DWORK( * ),
     $                   MACPAR( * ), Q( LDQ, * ), U( LDU, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil a J B' J' B - b D. N = 2 or N = 4.

  B       (input) DOUBLE PRECISION array, dimension (LDB, N)
          The leading N-by-N part of this array must contain the
          non-trivial factor of the decomposition of the
          skew-Hamiltonian input matrix J B' J' B. The (2,1) block
          is not referenced.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= N.

  D       (input) DOUBLE PRECISION array, dimension (LDD, N)
          The leading N/2-by-N part of this array must contain the
          first block row of the second matrix of a J B' J' B - b D.
          The matrix D has to be Hamiltonian. The strict lower
          triangle of the (1,2) block is not referenced.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= N/2.

  MACPAR  (input)  DOUBLE PRECISION array, dimension (2)
          Machine parameters:
          MACPAR(1)  (machine precision)*base, DLAMCH( 'P' );
          MACPAR(2)  safe minimum,             DLAMCH( 'S' ).
          This argument is not used for N = 2.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
          The leading N-by-N part of this array contains the
          orthogonal transformation matrix Q.

  LDQ     INTEGER
          The leading dimension of the array Q.  LDQ &gt;= N.

  U       (output) DOUBLE PRECISION array, dimension (LDU, N)
          The leading N-by-N part of this array contains the
          orthogonal symplectic transformation matrix U.

  LDU     INTEGER
          The leading dimension of the array U.  LDU &gt;= N.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          If N = 2 then DWORK is not referenced.

  LDWORK  INTEGER
          The length of the array DWORK.
          If N = 2 then LDWORK &gt;= 0; if N = 4 then LDWORK &gt;= 12.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          = 1: B11 or B22 is a (numerically) singular matrix.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses orthogonal transformations as described on page
  22 in [1], but with an improved implementation.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>