File: MB03HD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (149 lines) | stat: -rw-r--r-- 4,609 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<HTML>
<HEAD><TITLE>MB03HD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03HD">MB03HD</A></H2>
<H3>
Exchanging eigenvalues of a real 2-by-2 or 4-by-4 skew-Hamiltonian/Hamiltonian pencil in structured Schur form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To determine an orthogonal matrix Q, for a real regular 2-by-2 or
  4-by-4 skew-Hamiltonian/Hamiltonian pencil

                  ( A11 A12  )     ( B11  B12  )
      aA - bB = a (          ) - b (           )
                  (  0  A11' )     (  0  -B11' )

  in structured Schur form, such that  J Q' J' (aA - bB) Q  is still
  in structured Schur form but the eigenvalues are exchanged. The
  notation M' denotes the transpose of the matrix M.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03HD( N, A, LDA, B, LDB, MACPAR, Q, LDQ, DWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDQ, N
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DWORK( * ),
     $                   MACPAR( * ), Q( LDQ, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil aA - bB.  N = 2 or N = 4.

  A       (input) DOUBLE PRECISION array, dimension (LDA, N)
          If N = 4, the leading N/2-by-N upper trapezoidal part of
          this array must contain the first block row of the skew-
          Hamiltonian matrix A of the pencil aA - bB in structured
          Schur form. Only the entries (1,1), (1,2), (1,4), and
          (2,2) are referenced.
          If N = 2, this array is not referenced.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= N/2.

  B       (input) DOUBLE PRECISION array, dimension (LDB, N)
          The leading N/2-by-N part of this array must contain the
          first block row of the Hamiltonian matrix B of the
          pencil aA - bB in structured Schur form. The entry (2,3)
          is not referenced.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= N/2.

  MACPAR  (input)  DOUBLE PRECISION array, dimension (2)
          Machine parameters:
          MACPAR(1)  (machine precision)*base, DLAMCH( 'P' );
          MACPAR(2)  safe minimum,             DLAMCH( 'S' ).
          This argument is not used for N = 2.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
          The leading N-by-N part of this array contains the
          orthogonal transformation matrix Q.

  LDQ     INTEGER
          The leading dimension of the array Q.  LDQ &gt;= N.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (24)
          If N = 2, then DWORK is not referenced.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          = 1: the leading N/2-by-N/2 block of the matrix B is
               numerically singular, but slightly perturbed values
               have been used. This is a warning.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses orthogonal transformations as described on page
  31 in [2]. The structure is exploited.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical computation of deflating subspaces of skew-
      Hamiltonian/Hamiltonian pencils.
      SIAM J. Matrix Anal. Appl., 24 (1), pp. 165-190, 2002.

  [2] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>