1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
<HTML>
<HEAD><TITLE>MB03HD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03HD">MB03HD</A></H2>
<H3>
Exchanging eigenvalues of a real 2-by-2 or 4-by-4 skew-Hamiltonian/Hamiltonian pencil in structured Schur form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To determine an orthogonal matrix Q, for a real regular 2-by-2 or
4-by-4 skew-Hamiltonian/Hamiltonian pencil
( A11 A12 ) ( B11 B12 )
aA - bB = a ( ) - b ( )
( 0 A11' ) ( 0 -B11' )
in structured Schur form, such that J Q' J' (aA - bB) Q is still
in structured Schur form but the eigenvalues are exchanged. The
notation M' denotes the transpose of the matrix M.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03HD( N, A, LDA, B, LDB, MACPAR, Q, LDQ, DWORK,
$ INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDQ, N
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ),
$ MACPAR( * ), Q( LDQ, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the pencil aA - bB. N = 2 or N = 4.
A (input) DOUBLE PRECISION array, dimension (LDA, N)
If N = 4, the leading N/2-by-N upper trapezoidal part of
this array must contain the first block row of the skew-
Hamiltonian matrix A of the pencil aA - bB in structured
Schur form. Only the entries (1,1), (1,2), (1,4), and
(2,2) are referenced.
If N = 2, this array is not referenced.
LDA INTEGER
The leading dimension of the array A. LDA >= N/2.
B (input) DOUBLE PRECISION array, dimension (LDB, N)
The leading N/2-by-N part of this array must contain the
first block row of the Hamiltonian matrix B of the
pencil aA - bB in structured Schur form. The entry (2,3)
is not referenced.
LDB INTEGER
The leading dimension of the array B. LDB >= N/2.
MACPAR (input) DOUBLE PRECISION array, dimension (2)
Machine parameters:
MACPAR(1) (machine precision)*base, DLAMCH( 'P' );
MACPAR(2) safe minimum, DLAMCH( 'S' ).
This argument is not used for N = 2.
Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
The leading N-by-N part of this array contains the
orthogonal transformation matrix Q.
LDQ INTEGER
The leading dimension of the array Q. LDQ >= N.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (24)
If N = 2, then DWORK is not referenced.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
= 1: the leading N/2-by-N/2 block of the matrix B is
numerically singular, but slightly perturbed values
have been used. This is a warning.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm uses orthogonal transformations as described on page
31 in [2]. The structure is exploited.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
Numerical computation of deflating subspaces of skew-
Hamiltonian/Hamiltonian pencils.
SIAM J. Matrix Anal. Appl., 24 (1), pp. 165-190, 2002.
[2] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
Eigenproblems.
Tech. Rep., Technical University Chemnitz, Germany,
Nov. 2007.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is numerically backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|