1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
<HTML>
<HEAD><TITLE>MB03ID - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03ID">MB03ID</A></H2>
<H3>
Moving eigenvalues with negative real parts of a real skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the leading subpencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To move the eigenvalues with strictly negative real parts of an
N-by-N real skew-Hamiltonian/Hamiltonian pencil aS - bH in
structured Schur form, with
( 0 I ) ( A D ) ( B F )
S = J Z' J' Z, J = ( ), Z = ( ), H = ( ),
( -I 0 ) ( 0 C ) ( 0 -B' )
to the leading principal subpencil, while keeping the triangular
form. Above, A is upper triangular, B is upper quasi-triangular,
and C is lower triangular.
The matrices Z and H are transformed by an orthogonal symplectic
matrix U and an orthogonal matrix Q such that
( Aout Dout )
Zout = U' Z Q = ( ), and
( 0 Cout )
(1)
( Bout Fout )
Hout = J Q' J' H Q = ( ),
( 0 -Bout' )
where Aout, Bout and Cout remain in triangular form. The notation
M' denotes the transpose of the matrix M.
Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal matrix Q
that fulfills (1) is computed.
Optionally, if COMPU = 'I' or COMPU = 'U', the orthogonal
symplectic matrix
( U1 U2 )
U = ( )
( -U2 U1 )
that fulfills (1) is computed.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03ID( COMPQ, COMPU, N, A, LDA, C, LDC, D, LDD, B,
$ LDB, F, LDF, Q, LDQ, U1, LDU1, U2, LDU2, NEIG,
$ IWORK, LIWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ, COMPU
INTEGER INFO, LDA, LDB, LDC, LDD, LDF, LDQ, LDU1, LDU2,
$ LDWORK, LIWORK, N, NEIG
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), DWORK( * ), F( LDF, * ),
$ Q( LDQ, * ), U1( LDU1, * ), U2( LDU2, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
COMPQ CHARACTER*1
Specifies whether or not the orthogonal transformations
should be accumulated in the array Q, as follows:
= 'N': Q is not computed;
= 'I': the array Q is initialized internally to the unit
matrix, and the orthogonal matrix Q is returned;
= 'U': the array Q contains an orthogonal matrix Q0 on
entry, and the matrix Q0*Q is returned, where Q
is the product of the orthogonal transformations
that are applied to the pencil aS - bH to reorder
the eigenvalues.
COMPU CHARACTER*1
Specifies whether or not the orthogonal symplectic
transformations should be accumulated in the arrays U1 and
U2, as follows:
= 'N': U1 and U2 are not computed;
= 'I': the arrays U1 and U2 are initialized internally,
and the submatrices U1 and U2 defining the
orthogonal symplectic matrix U are returned;
= 'U': the arrays U1 and U2 contain the corresponding
submatrices of an orthogonal symplectic matrix U0
on entry, and the updated submatrices U1 and U2
of the matrix product U0*U are returned, where U
is the product of the orthogonal symplectic
transformations that are applied to the pencil
aS - bH to reorder the eigenvalues.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the pencil aS - bH. N >= 0, even.
A (input/output) DOUBLE PRECISION array, dimension
(LDA, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the upper triangular matrix A. The elements of the
strictly lower triangular part of this array are not used.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Aout.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1, N/2).
C (input/output) DOUBLE PRECISION array, dimension
(LDC, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the lower triangular matrix C. The elements of the
strictly upper triangular part of this array are not used.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Cout.
LDC INTEGER
The leading dimension of the array C. LDC >= MAX(1, N/2).
D (input/output) DOUBLE PRECISION array, dimension
(LDD, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the matrix D.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Dout.
LDD INTEGER
The leading dimension of the array D. LDD >= MAX(1, N/2).
B (input/output) DOUBLE PRECISION array, dimension
(LDB, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the upper quasi-triangular matrix B.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed upper quasi-triangular part of
the matrix Bout.
The part below the first subdiagonal of this array is
not referenced.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1, N/2).
F (input/output) DOUBLE PRECISION array, dimension
(LDF, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the upper triangular part of the symmetric matrix
F.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed upper triangular part of the
matrix Fout.
The strictly lower triangular part of this array is not
referenced, except for the element F(N/2,N/2-1), but its
initial value is preserved.
LDF INTEGER
The leading dimension of the array F. LDF >= MAX(1, N/2).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, if COMPQ = 'U', then the leading N-by-N part of
this array must contain a given matrix Q0, and on exit,
the leading N-by-N part of this array contains the product
of the input matrix Q0 and the transformation matrix Q
used to transform the matrices Z and H.
On exit, if COMPQ = 'I', then the leading N-by-N part of
this array contains the orthogonal transformation matrix
Q.
If COMPQ = 'N' this array is not referenced.
LDQ INTEGER
The leading dimension of the array Q.
LDQ >= 1, if COMPQ = 'N';
LDQ >= MAX(1, N), if COMPQ = 'I' or COMPQ = 'U'.
U1 (input/output) DOUBLE PRECISION array, dimension
(LDU1, N/2)
On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
of this array must contain the upper left block of a
given matrix U0, and on exit, the leading N/2-by-N/2 part
of this array contains the updated upper left block U1 of
the product of the input matrix U0 and the transformation
matrix U used to transform the matrices Z and H.
On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
of this array contains the upper left block U1 of the
orthogonal symplectic transformation matrix U.
If COMPU = 'N' this array is not referenced.
LDU1 INTEGER
The leading dimension of the array U1.
LDU1 >= 1, if COMPU = 'N';
LDU1 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.
U2 (input/output) DOUBLE PRECISION array, dimension
(LDU2, N/2)
On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
of this array must contain the upper right block of a
given matrix U0, and on exit, the leading N/2-by-N/2 part
of this array contains the updated upper right block U2 of
the product of the input matrix U0 and the transformation
matrix U used to transform the matrices Z and H.
On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
of this array contains the upper right block U2 of the
orthogonal symplectic transformation matrix U.
If COMPU = 'N' this array is not referenced.
LDU2 INTEGER
The leading dimension of the array U2.
LDU2 >= 1, if COMPU = 'N';
LDU2 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.
NEIG (output) INTEGER
The number of eigenvalues in aS - bH with strictly
negative real part.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK INTEGER
The dimension of the array IWORK.
LIWORK >= N+1.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The dimension of the array DWORK.
If COMPQ = 'N',
LDWORK >= MAX(2*N+48,171);
if COMPQ = 'I' or COMPQ = 'U',
LDWORK >= MAX(4*N+48,171).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
< 0: if INFO = -i, the i-th argument had an illegal value;
= 1: the periodic QZ algorithm did not converge in SLICOT
Library routine MB03BB;
= 2: an error occured during the execution of MB03CD;
= 3: an error occured during the execution of MB03GD.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm reorders the eigenvalues like the following scheme:
Step 1: Reorder the eigenvalues in the subpencil aC'*A - bB.
I. Reorder the eigenvalues with negative real parts to the
top.
II. Reorder the eigenvalues with positive real parts to the
bottom.
Step 2: Reorder the remaining eigenvalues with negative real
parts in the pencil aS - bH.
I. Exchange the eigenvalues between the last diagonal block
in aC'*A - bB and the last diagonal block in aS - bH.
II. Move the eigenvalues of the R-th block to the (MM+1)-th
block, where R denotes the number of upper quasi-
triangular blocks in aC'*A - bB and MM denotes the current
number of blocks in aC'*A - bB with eigenvalues with
negative real parts.
The algorithm uses a sequence of orthogonal transformations as
described on page 25 in [1]. To achieve those transformations the
elementary subroutines MB03CD and MB03GD are called for the
corresponding matrix structures.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
Eigenproblems.
Tech. Rep., Technical University Chemnitz, Germany,
Nov. 2007.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm is numerically backward stable and needs O(N ) real
floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|