1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
<HTML>
<HEAD><TITLE>MB03IZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03IZ">MB03IZ</A></H2>
<H3>
Moving eigenvalues with negative real parts of a complex skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the leading subpencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To move the eigenvalues with strictly negative real parts of an
N-by-N complex skew-Hamiltonian/Hamiltonian pencil aS - bH in
structured Schur form, with
( 0 I )
S = J Z' J' Z, where J = ( ),
( -I 0 )
to the leading principal subpencil, while keeping the triangular
form. On entry, we have
( A D ) ( B F )
Z = ( ), H = ( ),
( 0 C ) ( 0 -B' )
where A and B are upper triangular and C is lower triangular.
Z and H are transformed by a unitary symplectic matrix U and a
unitary matrix Q such that
( Aout Dout )
Zout = U' Z Q = ( ), and
( 0 Cout )
(1)
( Bout Fout )
Hout = J Q' J' H Q = ( ),
( 0 -Bout' )
where Aout, Bout and Cout remain in triangular form. The notation
M' denotes the conjugate transpose of the matrix M.
Optionally, if COMPQ = 'I' or COMPQ = 'U', the unitary matrix Q
that fulfills (1) is computed.
Optionally, if COMPU = 'I' or COMPU = 'U', the unitary symplectic
matrix
( U1 U2 )
U = ( )
( -U2 U1 )
that fulfills (1) is computed.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03IZ( COMPQ, COMPU, N, A, LDA, C, LDC, D, LDD, B,
$ LDB, F, LDF, Q, LDQ, U1, LDU1, U2, LDU2, NEIG,
$ TOL, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ, COMPU
INTEGER INFO, LDA, LDB, LDC, LDD, LDF, LDQ, LDU1, LDU2,
$ N, NEIG
DOUBLE PRECISION TOL
C .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), F( LDF, * ), Q( LDQ, * ),
$ U1( LDU1, * ), U2( LDU2, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
COMPQ CHARACTER*1
Specifies whether or not the unitary transformations
should be accumulated in the array Q, as follows:
= 'N': Q is not computed;
= 'I': the array Q is initialized internally to the unit
matrix, and the unitary matrix Q is returned;
= 'U': the array Q contains a unitary matrix Q0 on
entry, and the matrix Q0*Q is returned, where Q
is the product of the unitary transformations
that are applied to the pencil aS - bH to reorder
the eigenvalues.
COMPU CHARACTER*1
Specifies whether or not the unitary symplectic
transformations should be accumulated in the arrays U1 and
U2, as follows:
= 'N': U1 and U2 are not computed;
= 'I': the arrays U1 and U2 are initialized internally,
and the submatrices U1 and U2 defining the
unitary symplectic matrix U are returned;
= 'U': the arrays U1 and U2 contain the corresponding
submatrices of a unitary symplectic matrix U0
on entry, and the updated submatrices U1 and U2
of the matrix product U0*U are returned, where U
is the product of the unitary symplectic
transformations that are applied to the pencil
aS - bH to reorder the eigenvalues.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the pencil aS - bH. N >= 0, even.
A (input/output) COMPLEX*16 array, dimension (LDA, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the upper triangular matrix A.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Aout.
The strictly lower triangular part of this array is not
referenced.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1, N/2).
C (input/output) COMPLEX*16 array, dimension (LDC, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the lower triangular matrix C.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Cout.
The strictly upper triangular part of this array is not
referenced.
LDC INTEGER
The leading dimension of the array C. LDC >= MAX(1, N/2).
D (input/output) COMPLEX*16 array, dimension (LDD, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the matrix D.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Dout.
LDD INTEGER
The leading dimension of the array D. LDD >= MAX(1, N/2).
B (input/output) COMPLEX*16 array, dimension (LDB, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the upper triangular matrix B.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Bout.
The strictly lower triangular part of this array is not
referenced.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1, N/2).
F (input/output) COMPLEX*16 array, dimension (LDF, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the upper triangular part of the Hermitian matrix
F.
On exit, the leading N/2-by-N/2 part of this array
contains the transformed matrix Fout.
The strictly lower triangular part of this array is not
referenced.
LDF INTEGER
The leading dimension of the array F. LDF >= MAX(1, N/2).
Q (input/output) COMPLEX*16 array, dimension (LDQ, N)
On entry, if COMPQ = 'U', then the leading N-by-N part of
this array must contain a given matrix Q0, and on exit,
the leading N-by-N part of this array contains the product
of the input matrix Q0 and the transformation matrix Q
used to transform the matrices S and H.
On exit, if COMPQ = 'I', then the leading N-by-N part of
this array contains the unitary transformation matrix Q.
If COMPQ = 'N' this array is not referenced.
LDQ INTEGER
The leading dimension of the array Q.
LDQ >= 1, if COMPQ = 'N';
LDQ >= MAX(1, N), if COMPQ = 'I' or COMPQ = 'U'.
U1 (input/output) COMPLEX*16 array, dimension (LDU1, N/2)
On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
of this array must contain the upper left block of a
given matrix U0, and on exit, the leading N/2-by-N/2 part
of this array contains the updated upper left block U1 of
the product of the input matrix U0 and the transformation
matrix U used to transform the matrices S and H.
On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
of this array contains the upper left block U1 of the
unitary symplectic transformation matrix U.
If COMPU = 'N' this array is not referenced.
LDU1 INTEGER
The leading dimension of the array U1.
LDU1 >= 1, if COMPU = 'N';
LDU1 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.
U2 (input/output) COMPLEX*16 array, dimension (LDU2, N/2)
On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
of this array must contain the upper right block of a
given matrix U0, and on exit, the leading N/2-by-N/2 part
of this array contains the updated upper right block U2 of
the product of the input matrix U0 and the transformation
matrix U used to transform the matrices S and H.
On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
of this array contains the upper right block U2 of the
unitary symplectic transformation matrix U.
If COMPU = 'N' this array is not referenced.
LDU2 INTEGER
The leading dimension of the array U2.
LDU2 >= 1, if COMPU = 'N';
LDU2 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.
NEIG (output) INTEGER
The number of eigenvalues in aS - bH with strictly
negative real part.
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
The tolerance used to decide the sign of the eigenvalues.
If the user sets TOL > 0, then the given value of TOL is
used. If the user sets TOL <= 0, then an implicitly
computed, default tolerance, defined by MIN(N,10)*EPS, is
used instead, where EPS is the machine precision (see
LAPACK Library routine DLAMCH). A larger value might be
needed for pencils with multiple eigenvalues.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
< 0: if INFO = -i, the i-th argument had an illegal value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm reorders the eigenvalues like the following scheme:
Step 1: Reorder the eigenvalues in the subpencil aC'*A - bB.
I. Reorder the eigenvalues with negative real parts to the
top.
II. Reorder the eigenvalues with positive real parts to the
bottom.
Step 2: Reorder the remaining eigenvalues with negative real
parts.
I. Exchange the eigenvalues between the last diagonal block
in aC'*A - bB and the last diagonal block in aS - bH.
II. Move the eigenvalues in the N/2-th place to the (MM+1)-th
place, where MM denotes the current number of eigenvalues
with negative real parts in aC'*A - bB.
The algorithm uses a sequence of unitary transformations as
described on page 38 in [1]. To achieve those transformations the
elementary SLICOT Library subroutines MB03CZ and MB03GZ are called
for the corresponding matrix structures.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
Numerical Computation of Deflating Subspaces of Embedded
Hamiltonian Pencils.
Tech. Rep. SFB393/99-15, Technical University Chemnitz,
Germany, June 1999.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm is numerically backward stable and needs O(N )
complex floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|