File: MB03KD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (521 lines) | stat: -rw-r--r-- 19,898 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
<HTML>
<HEAD><TITLE>MB03KD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03KD">MB03KD</A></H2>
<H3>
Reordering the diagonal blocks of a formal matrix product using periodic QZ algorithm
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To reorder the diagonal blocks of the formal matrix product

     T22_K^S(K) * T22_K-1^S(K-1) * ... * T22_1^S(1),             (1)

  of length K, in the generalized periodic Schur form,

           [  T11_k  T12_k  T13_k  ]
     T_k = [    0    T22_k  T23_k  ],    k = 1, ..., K,          (2)
           [    0      0    T33_k  ]

  where

  - the submatrices T11_k are NI(k+1)-by-NI(k), if S(k) = 1, or
    NI(k)-by-NI(k+1), if S(k) = -1, and contain dimension-induced
    infinite eigenvalues,
  - the submatrices T22_k are NC-by-NC and contain core eigenvalues,
    which are generically neither zero nor infinite,
  - the submatrices T33_k contain dimension-induced zero
    eigenvalues,

  such that the M selected eigenvalues pointed to by the logical
  vector SELECT end up in the leading part of the matrix sequence
  T22_k.

  Given that N(k) = N(k+1) for all k where S(k) = -1, the T11_k are
  void and the first M columns of the updated orthogonal
  transformation matrix sequence Q_1, ..., Q_K span a periodic
  deflating subspace corresponding to the same eigenvalues.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03KD( COMPQ, WHICHQ, STRONG, K, NC, KSCHUR, N, NI, S,
     $                   SELECT, T, LDT, IXT, Q, LDQ, IXQ, M, TOL,
     $                   IWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, STRONG
      INTEGER            INFO, K, KSCHUR, LDWORK, M, NC
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      LOGICAL            SELECT( * )
      INTEGER            IWORK( * ), IXQ( * ), IXT( * ), LDQ( * ),
     $                   LDT( * ), N( * ), NI( * ), S( * ), WHICHQ( * )
      DOUBLE PRECISION   DWORK( * ), Q( * ), T( * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  COMPQ   CHARACTER*1
          Specifies whether to compute the orthogonal transformation
          matrices Q_k, as follows:
          = 'N': do not compute any of the matrices Q_k;
          = 'I': each coefficient of Q is initialized internally to
                 the identity matrix, and the orthogonal matrices
                 Q_k are returned, where Q_k, k = 1, ..., K,
                 performed the reordering;
          = 'U': each coefficient of Q must contain an orthogonal
                 matrix Q1_k on entry, and the products Q1_k*Q_k are
                 returned;
          = 'W': the computation of each Q_k is specified
                 individually in the array WHICHQ.

  WHICHQ  INTEGER array, dimension (K)
          If COMPQ = 'W', WHICHQ(k) specifies the computation of Q_k
          as follows:
          = 0:   do not compute Q_k;
          = 1:   the kth coefficient of Q is initialized to the
                 identity matrix, and the orthogonal matrix Q_k is
                 returned;
          = 2:   the kth coefficient of Q must contain an orthogonal
                 matrix Q1_k on entry, and the product Q1_k*Q_k is
                 returned.
          This array is not referenced if COMPQ &lt;&gt; 'W'.

  STRONG  CHARACTER*1
          Specifies whether to perform the strong stability tests,
          as follows:
          = 'N': do not perform the strong stability tests;
          = 'S': perform the strong stability tests; often, this is
                 not needed, and omitting them can save some
                 computations.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  K       (input) INTEGER
          The period of the periodic matrix sequences T and Q (the
          number of factors in the matrix product).  K &gt;= 2.
          (For K = 1, a standard eigenvalue reordering problem is
          obtained.)

  NC      (input) INTEGER
          The number of core eigenvalues.  0 &lt;= NC &lt;= min(N).

  KSCHUR  (input) INTEGER
          The index for which the matrix T22_kschur is upper quasi-
          triangular. All other T22 matrices are upper triangular.

  N       (input) INTEGER array, dimension (K)
          The leading K elements of this array must contain the
          dimensions of the factors of the formal matrix product T,
          such that the k-th coefficient T_k is an N(k+1)-by-N(k)
          matrix, if S(k) = 1, or an N(k)-by-N(k+1) matrix,
          if S(k) = -1, k = 1, ..., K, where N(K+1) = N(1).

  NI      (input) INTEGER array, dimension (K)
          The leading K elements of this array must contain the
          dimensions of the factors of the matrix sequence T11_k.
          N(k) &gt;= NI(k) + NC &gt;= 0.

  S       (input) INTEGER array, dimension (K)
          The leading K elements of this array must contain the
          signatures (exponents) of the factors in the K-periodic
          matrix sequence. Each entry in S must be either 1 or -1;
          the value S(k) = -1 corresponds to using the inverse of
          the factor T_k.

  SELECT  (input) LOGICAL array, dimension (NC)
          SELECT specifies the eigenvalues in the selected cluster.
          To select a real eigenvalue w(j), SELECT(j) must be set to
          .TRUE.. To select a complex conjugate pair of eigenvalues
          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
          either SELECT(j) or SELECT(j+1) or both must be set to
          .TRUE.; a complex conjugate pair of eigenvalues must be
          either both included in the cluster or both excluded.

  T       (input/output) DOUBLE PRECISION array, dimension (*)
          On entry, this array must contain at position IXT(k) the
          matrix T_k, which is at least N(k+1)-by-N(k), if S(k) = 1,
          or at least N(k)-by-N(k+1), if S(k) = -1, in periodic
          Schur form.
          On exit, the matrices T_k are overwritten by the reordered
          periodic Schur form.

  LDT     INTEGER array, dimension (K)
          The leading dimensions of the matrices T_k in the one-
          dimensional array T.
          LDT(k) &gt;= max(1,N(k+1)),  if S(k) =  1,
          LDT(k) &gt;= max(1,N(k)),    if S(k) = -1.

  IXT     INTEGER array, dimension (K)
          Start indices of the matrices T_k in the one-dimensional
          array T.

  Q       (input/output) DOUBLE PRECISION array, dimension (*)
          On entry, this array must contain at position IXQ(k) a
          matrix Q_k of size at least N(k)-by-N(k), provided that
          COMPQ = 'U', or COMPQ = 'W' and WHICHQ(k) = 2.
          On exit, if COMPQ = 'I' or COMPQ = 'W' and WHICHQ(k) = 1,
          Q_k contains the orthogonal matrix that performed the
          reordering. If COMPQ = 'U', or COMPQ = 'W' and
          WHICHQ(k) = 2, Q_k is post-multiplied with the orthogonal
          matrix that performed the reordering.
          This array is not referenced if COMPQ = 'N'.

  LDQ     INTEGER array, dimension (K)
          The leading dimensions of the matrices Q_k in the one-
          dimensional array Q.
          LDQ(k) &gt;= max(1,N(k)), if COMPQ = 'I', or COMPQ = 'U', or
                                    COMPQ = 'W' and WHICHQ(k) &gt; 0;
          This array is not referenced if COMPQ = 'N'.

  IXQ     INTEGER array, dimension (K)
          Start indices of the matrices Q_k in the one-dimensional
          array Q.
          This array is not referenced if COMPQ = 'N'.

  M       (output) INTEGER
          The number of selected core eigenvalues which were
          reordered to the top of T22_k.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          The tolerance parameter c. The weak and strong stability
          tests performed for checking the reordering use a
          threshold computed by the formula  MAX(c*EPS*NRM, SMLNUM),
          where NRM is the varying Frobenius norm of the matrices
          formed by concatenating K pairs of adjacent diagonal
          blocks of sizes 1 and/or 2 in the T22_k submatrices from
          (2), which are swapped, and EPS and SMLNUM are the machine
          precision and safe minimum divided by EPS, respectively
          (see LAPACK Library routine DLAMCH). The value c should
          normally be at least 10.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (4*K)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= 10*K + MN, if all blocks involved in reordering
                               have order 1;
          LDWORK &gt;= 25*K + MN, if there is at least a block of
                               order 2, but no adjacent blocks of
                               order 2 are involved in reordering;
          LDWORK &gt;= MAX(42*K + MN, 80*K - 48), if there is at least
                               a pair of adjacent blocks of order 2
                               involved in reordering;
          where MN = MXN, if MXN &gt; 10, and MN = 0, otherwise, with
          MXN = MAX(N(k),k=1,...,K).

          If LDWORK = -1  a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the reordering of T failed because some eigenvalues
                are too close to separate (the problem is very ill-
                conditioned); T may have been partially reordered.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  An adaptation of the LAPACK Library routine DTGSEN is used.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The implemented method is numerically backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB03KD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            KMAX, NMAX
      PARAMETER          ( KMAX = 6, NMAX = 50 )
      INTEGER            LDA1, LDA2, LDQ1, LDQ2, LDWORK, LIWORK
      PARAMETER          ( LDA1 = NMAX, LDA2 = NMAX, LDQ1 = NMAX,
     $                     LDQ2 = NMAX,
     $                     LDWORK = MAX( 42*KMAX + NMAX, 80*KMAX - 48,
     $                                   KMAX + MAX( 2*NMAX, 8*KMAX ) ),
     $                     LIWORK = MAX( 4*KMAX, 2*KMAX + NMAX ) )
      DOUBLE PRECISION   HUND, ZERO
      PARAMETER          ( HUND = 1.0D2, ZERO = 0.0D0 )
*
*     .. Local Scalars ..
      CHARACTER          COMPQ, DEFL, JOB, STRONG
      INTEGER            H, I, IHI, ILO, INFO, IWARN, J, K, L, M, N, P
      DOUBLE PRECISION   TOL
*
*     .. Local Arrays ..
      LOGICAL            SELECT( NMAX )
      INTEGER            IWORK( LIWORK ), IXQ( KMAX ), IXT( KMAX ),
     $                   LDQ( KMAX ), LDT( KMAX ), ND( KMAX ),
     $                   NI( KMAX ), QIND( KMAX ), S( KMAX ),
     $                   SCAL( NMAX )
      DOUBLE PRECISION   A( LDA1, LDA2, KMAX ), ALPHAI( NMAX ),
     $                   ALPHAR( NMAX ), BETA( NMAX ), DWORK( LDWORK),
     $                   Q( LDQ1, LDQ2, KMAX ), QK( NMAX*NMAX*KMAX ),
     $                   T( NMAX*NMAX*KMAX )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           DLACPY, MB03BD, MB03KD
*
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX
*
*     .. Executable Statements ..
*
      WRITE( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) JOB, DEFL, COMPQ, STRONG, K, N, H, ILO, IHI
      IF( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
         TOL = HUND
         READ( NIN, FMT = * ) ( S( I ), I = 1, K )
         READ( NIN, FMT = * ) ( ( ( A( I, J, L ), J = 1, N ),
     $                                I = 1, N ), L = 1, K )
         IF( LSAME( COMPQ, 'U' ) )
     $      READ( NIN, FMT = * ) ( ( ( Q( I, J, L ), J = 1, N ),
     $                                   I = 1, N ), L = 1, K )
         IF( LSAME( COMPQ, 'P' ) ) THEN
            READ( NIN, FMT = * ) ( QIND( I ), I = 1, K )
            DO 10 L = 1, K
               IF( QIND( L ).GT.0 )
     $            READ( NIN, FMT = * ) ( ( Q( I, J, QIND( L ) ),
     $                                    J = 1, N ), I = 1, N )
   10       CONTINUE
         END IF
         IF( LSAME( JOB, 'E' ) )
     $      JOB = 'S'
*        Compute the eigenvalues and the transformed matrices.
         CALL MB03BD( JOB, DEFL, COMPQ, QIND, K, N, H, ILO, IHI, S, A,
     $                LDA1, LDA2, Q, LDQ1, LDQ2, ALPHAR, ALPHAI, BETA,
     $                SCAL, IWORK, LIWORK, DWORK, LDWORK, IWARN, INFO )
*
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE IF( IWARN.EQ.0 ) THEN
*           Prepare the data for calling MB03KD, which uses different
*           data structures and reverse ordering of the factors.
            DO 20 L = 1, K
               ND(  L ) = MAX( 1, N )
               NI(  L ) = 0
               LDT( L ) = MAX( 1, N )
               IXT( L ) = ( L - 1 )*LDT( L )*N + 1
               LDQ( L ) = MAX( 1, N )
               IXQ( L ) = IXT( L )
               IF( L.LE.INT( K/2 ) ) THEN
                  I = S( K - L + 1 )
                  S( K - L + 1 ) = S( L )
                  S( L ) = I
               END IF
   20       CONTINUE
            DO 30 L = 1, K
               CALL DLACPY( 'Full', N, N, A( 1, 1, K-L+1 ), LDA1,
     $                      T( IXT( L ) ), LDT( L ) )
   30       CONTINUE
            IF( LSAME( COMPQ, 'U' ) .OR. LSAME( COMPQ, 'I' ) ) THEN
               COMPQ = 'U'
               DO 40 L = 1, K
                  CALL DLACPY( 'Full', N, N, Q( 1, 1, K-L+1 ), LDQ1,
     $                         QK( IXQ( L ) ), LDQ( L ) )
   40          CONTINUE
            ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
               COMPQ = 'W'
               DO 50 L = 1, K
                  IF( QIND( L ).LT.0 )
     $                QIND( L ) = 2
                  P = QIND( L )
                  IF( P.NE.0 )
     $               CALL DLACPY( 'Full', N, N, Q( 1, 1, K-P+1 ), LDQ1,
     $                            QK( IXQ( P ) ), LDQ( P ) )
   50          CONTINUE
            END IF
*           Select eigenvalues with negative real part.
            DO 60 I = 1, N
               SELECT( I ) = ALPHAR( I ).LT.ZERO
   60       CONTINUE
            WRITE( NOUT, FMT = 99996 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, N )
            WRITE( NOUT, FMT = 99994 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, N )
            WRITE( NOUT, FMT = 99993 )
            WRITE( NOUT, FMT = 99995 ) (   BETA( I ), I = 1, N )
            WRITE( NOUT, FMT = 99992 )
            WRITE( NOUT, FMT = 99991 ) (   SCAL( I ), I = 1, N )
*           Compute the transformed matrices, after reordering the
*           eigenvalues.
            CALL MB03KD( COMPQ, QIND, STRONG, K, N, H, ND, NI, S,
     $                   SELECT, T, LDT, IXT, QK, LDQ, IXQ, M, TOL,
     $                   IWORK, DWORK, LDWORK, INFO )
            IF( INFO.NE.0 ) THEN
               WRITE( NOUT, FMT = 99990 ) INFO
            ELSE
               WRITE( NOUT, FMT = 99989 )
               DO 80 L = 1, K
                  P = K - L + 1
                  WRITE( NOUT, FMT = 99988 ) L
                  DO 70 I = 1, N
                     WRITE( NOUT, FMT = 99995 )
     $                    ( T( IXT( P ) + I - 1 + ( J - 1 )*LDT( P ) ),
     $                       J = 1, N )
   70             CONTINUE
   80          CONTINUE
               IF( LSAME( COMPQ, 'U' ) .OR. LSAME( COMPQ, 'I' ) ) THEN
                  WRITE( NOUT, FMT = 99987 )
                  DO 100 L = 1, K
                     P = K - L + 1
                     WRITE( NOUT, FMT = 99988 ) L
                     DO 90 I = 1, N
                        WRITE( NOUT, FMT = 99995 )
     $                       ( QK( IXQ( P ) + I - 1 +
     $                           ( J - 1 )*LDQ( P ) ), J = 1, N )
   90                CONTINUE
  100             CONTINUE
               ELSE IF( LSAME( COMPQ, 'W' ) ) THEN
                  WRITE( NOUT, FMT = 99987 )
                  DO 120 L = 1, K
                     IF( QIND( L ).GT.0 ) THEN
                        P = K - QIND( L ) + 1
                        WRITE( NOUT, FMT = 99988 ) QIND( L )
                        DO 110 I = 1, N
                           WRITE( NOUT, FMT = 99995 )
     $                          ( QK( IXQ( P ) + I - 1 +
     $                              ( J - 1 )*LDQ( P ) ), J = 1, N )
  110                   CONTINUE
                     END IF
  120             CONTINUE
               END IF
            END IF
         ELSE
            WRITE( NOUT, FMT = 99979 ) IWARN
         END IF
      END IF
      STOP
*
99999 FORMAT( 'MB03KD EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT( 'INFO on exit from MB03BD = ', I2 )
99996 FORMAT( 'The vector ALPHAR is ' )
99995 FORMAT( 50( 1X, F8.4 ) )
99994 FORMAT( 'The vector ALPHAI is ' )
99993 FORMAT( 'The vector BETA is ' )
99992 FORMAT( 'The vector SCAL is ' )
99991 FORMAT( 50( 1X, I5 ) )
99990 FORMAT( 'INFO on exit from MB03KD = ', I2 )
99989 FORMAT( 'The matrix A on exit is ' )
99988 FORMAT( 'The factor ', I2, ' is ' )
99987 FORMAT( 'The matrix Q on exit is ' )
99986 FORMAT( 'LDT', 3I5 )
99985 FORMAT( 'IXT', 3I5 )
99984 FORMAT( 'LDQ', 3I5 )
99983 FORMAT( 'IXQ', 3I5 )
99982 FORMAT( 'ND' , 3I5 )
99981 FORMAT( 'NI' , 3I5)
99980 FORMAT( 'SELECT', 3L5 )
99979 FORMAT( 'IWARN on exit from MB03BD = ', I2 )
      END
</PRE>
<B>Program Data</B>
<PRE>
MB03KD EXAMPLE PROGRAM DATA
   S   C   I   N   3   3   2   1   3
  -1     1    -1
   2.0   0.0   1.0
   0.0  -2.0  -1.0
   0.0   0.0   3.0
   1.0   2.0   0.0
   4.0  -1.0   3.0
   0.0   3.0   1.0
   1.0   0.0   1.0
   0.0   4.0  -1.0
   0.0   0.0  -2.0

</PRE>
<B>Program Results</B>
<PRE>
MB03KD EXAMPLE PROGRAM RESULTS
The vector ALPHAR is 
   0.3230   0.3230  -0.8752
The vector ALPHAI is 
   0.5694  -0.5694   0.0000
The vector BETA is 
   1.0000   1.0000   1.0000
The vector SCAL is 
     0     0    -1
The matrix A on exit is 
The factor  1 is 
   2.5997  -0.0087   1.6898
   0.0000   1.9846   0.1942
   0.0000   0.0000   2.3259
The factor  2 is 
  -2.0990  -1.0831  -2.5601
   0.0000   3.4838   0.2950
   0.0000   3.4552  -2.1690
The factor  3 is 
   1.8451   0.9260   1.2717
   0.0000   1.3976  -2.3544
   0.0000   0.0000  -3.1023
The matrix Q on exit is 
The factor  1 is 
  -0.2052   0.4647  -0.8614
   0.2033   0.8811   0.4270
  -0.9574   0.0875   0.2753
The factor  2 is 
  -0.7743  -0.1384   0.6176
   0.6070  -0.4386   0.6627
   0.1791   0.8880   0.4236
The factor  3 is 
  -0.6714   0.7225  -0.1651
  -0.3658  -0.5168  -0.7740
  -0.6446  -0.4593   0.6112
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>