File: MB03LF.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (509 lines) | stat: -rw-r--r-- 20,543 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
<HTML>
<HEAD><TITLE>MB03LF - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03LF">MB03LF</A></H2>
<H3>
Eigenvalues and right deflating subspace of a real skew-Hamiltonian/Hamiltonian pencil in factored form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the relevant eigenvalues of a real N-by-N skew-
  Hamiltonian/Hamiltonian pencil aS - bH, with

                                (  B  F  )      (  0  I  )
    S = T Z = J Z' J' Z and H = (        ), J = (        ),      (1)
                                (  G -B' )      ( -I  0  )

  where the notation M' denotes the transpose of the matrix M.
  Optionally, if COMPQ = 'C', an orthogonal basis of the right
  deflating subspace of aS - bH corresponding to the eigenvalues
  with strictly negative real part is computed. Optionally, if
  COMPU = 'C', an orthonormal basis of the companion subspace,
  range(P_U) [1], which corresponds to the eigenvalues with strictly
  negative real part, is computed.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,
     $                   LDFG, NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI,
     $                   BETA, IWORK, LIWORK, DWORK, LDWORK, BWORK,
     $                   IWARN, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPU, ORTH
      INTEGER            INFO, IWARN, LDB, LDFG, LDQ, LDU, LDWORK, LDZ,
     $                   LIWORK, N, NEIG
C     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), B( LDB, * ),
     $                   BETA( * ), DWORK( * ), FG( LDFG, * ),
     $                   Q( LDQ, * ), U( LDU, * ), Z( LDZ, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  COMPQ   CHARACTER*1
          Specifies whether to compute the right deflating subspace
          corresponding to the eigenvalues of aS - bH with strictly
          negative real part.
          = 'N':  do not compute the deflating subspace;
          = 'C':  compute the deflating subspace and store it in the
                  leading subarray of Q.

  COMPU   CHARACTER*1
          Specifies whether to compute the companion subspace
          corresponding to the eigenvalues of aS - bH with strictly
          negative real part.
          = 'N': do not compute the companion subspace;
          = 'C': compute the companion subspace and store it in the
                 leading subarray of U.

  ORTH    CHARACTER*1
          If COMPQ = 'C' and/or COMPU = 'C', specifies the technique
          for computing the orthogonal basis of the deflating
          subspace, and/or of the companion subspace, as follows:
          = 'P':  QR factorization with column pivoting;
          = 'S':  singular value decomposition.
          If COMPQ = 'N' and COMPU = 'N', the ORTH value is not
          used.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil aS - bH.  N &gt;= 0, even.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
          On entry, the leading N-by-N part of this array must
          contain the non-trivial factor Z in the factorization
          S = J Z' J' Z of the skew-Hamiltonian matrix S.
          On exit, if COMPQ = 'C' or COMPU = 'C', the leading
          N-by-N part of this array contains the transformed upper
                            ~
          triangular matrix Z11 (see METHOD), after moving the
          eigenvalues with strictly negative real part to the top
          of the pencil (3). The strictly lower triangular part is
          not zeroed.
          If COMPQ = 'N' and COMPU = 'N', the leading N-by-N part of
          this array contains the matrix Z obtained by the SLICOT
          Library routine MB04AD just before the application of the
          periodic QZ algorithm. The elements of the (2,1) block,
          i.e., in the rows N/2+1 to N and in the columns 1 to N/2
          are not set to zero, but are unchanged on exit.

  LDZ     INTEGER
          The leading dimension of the array Z.  LDZ &gt;= MAX(1, N).

  B       (input) DOUBLE PRECISION array, dimension (LDB, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= MAX(1, N/2).

  FG      (input) DOUBLE PRECISION array, dimension (LDFG, N/2+1)
          On entry, the leading N/2-by-N/2 lower triangular part of
          this array must contain the lower triangular part of the
          symmetric matrix G, and the N/2-by-N/2 upper triangular
          part of the submatrix in the columns 2 to N/2+1 of this
          array must contain the upper triangular part of the
          symmetric matrix F.

  LDFG    INTEGER
          The leading dimension of the array FG.
          LDFG &gt;= MAX(1, N/2).

  NEIG    (output) INTEGER
          If COMPQ = 'C' or COMPU = 'C', the number of eigenvalues
          in aS - bH with strictly negative real part.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ, 2*N)
          On exit, if COMPQ = 'C', the leading N-by-NEIG part of
          this array contains an orthogonal basis of the right
          deflating subspace corresponding to the eigenvalues of
          aS - bH with strictly negative real part. The remaining
          part of this array is used as workspace.
          If COMPQ = 'N', this array is not referenced.

  LDQ     INTEGER
          The leading dimension of the array Q.
          LDQ &gt;= 1,           if COMPQ = 'N';
          LDQ &gt;= MAX(1, 2*N), if COMPQ = 'C'.

  U       (output) DOUBLE PRECISION array, dimension (LDU, 2*N)
          On exit, if COMPU = 'C', the leading N-by-NEIG part of
          this array contains an orthogonal basis of the companion
          subspace corresponding to the eigenvalues of aS - bH with
          strictly negative real part. The remaining part of this
          array is used as workspace.
          If COMPU = 'N', this array is not referenced.

  LDU     INTEGER
          The leading dimension of the array U.
          LDU &gt;= 1,         if COMPU = 'N';
          LDU &gt;= MAX(1, N), if COMPU = 'C'.

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N/2)
          The real parts of each scalar alpha defining an eigenvalue
          of the pencil aS - bH.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N/2)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of the pencil aS - bH.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real.

  BETA    (output) DOUBLE PRECISION array, dimension (N/2)
          The scalars beta that define the eigenvalues of the pencil
          aS - bH.
          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
          beta = BETA(j) represent the j-th eigenvalue of the pencil
          aS - bH, in the form lambda = alpha/beta. Since lambda may
          overflow, the ratios should not, in general, be computed.
          Due to the skew-Hamiltonian/Hamiltonian structure of the
          pencil, for every eigenvalue lambda, -lambda is also an
          eigenvalue, and thus it has only to be saved once in
          ALPHAR, ALPHAI and BETA.
          Specifically, only eigenvalues with imaginary parts
          greater than or equal to zero are stored; their conjugate
          eigenvalues are not stored. If imaginary parts are zero
          (i.e., for real eigenvalues), only positive eigenvalues
          are stored. The remaining eigenvalues have opposite signs.
          As a consequence, pairs of complex eigenvalues, stored in
          consecutive locations, are not complex conjugate.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (LIWORK)
          On exit, if INFO = -20, IWORK(1) returns the minimum value
          of LIWORK.

  LIWORK  INTEGER
          The dimension of the array IWORK.
          LIWORK &gt;= N + 18,      if COMPQ = 'N' and COMPU = 'N';
          LIWORK &gt;= MAX( 2*N+1, 48 ), otherwise.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.
          On exit, if INFO = -22, DWORK(1) returns the minimum value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= b*N*N + 3*N*N/2 + MAX( 6*N, 54 ),
                                    if COMPQ = 'N' and COMPU = 'N';
          LDWORK &gt;= d*N*N + MAX( N/2+252, 432 ), otherwise, where
                    b = a,   d = c,   if COMPU = 'N',
                    b = a+1, d = c+1, if COMPU = 'C', and
                    a = 2,   c = 7,   if COMPQ = 'N',
                    a = 4,   c = 10,  if COMPQ = 'C'.
          For good performance LDWORK should be generally larger.

          If LDWORK = -1  a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message is issued by XERBLA.

  BWORK   LOGICAL array, dimension (N/2)

</PRE>
<B>Warning Indicator</B>
<PRE>
  IWARN   INTEGER
          = 0: no warning;
          = 1: some eigenvalues might be unreliable. More details
               can be obtained by running the SLICOT routine MB04AD.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          &lt; 0: if INFO = -i, the i-th argument had an illegal value;
          = 1: periodic QZ iteration failed in the SLICOT Library
               routines MB04AD, MB04CD or MB03BB (QZ iteration did
               not converge or computation of the shifts failed);
          = 2: standard QZ iteration failed in the SLICOT Library
               routines MB04CD or MB03CD (called by MB03ID);
          = 3: a numerically singular matrix was found in the SLICOT
               Library routine MB03GD (called by MB03ID);
          = 4: the singular value decomposition failed in the LAPACK
               routine DGESVD (for ORTH = 'S').

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  First, the decompositions of S and H are computed via orthogonal
  matrices Q1 and Q2 and orthogonal symplectic matrices U1 and U2,
  such that

                                ( T11  T12 )
    Q1' T U1 = Q1' J Z' J' U1 = (          ),
                                (  0   T22 )

               ( Z11  Z12 )
    U2' Z Q2 = (          ),                                     (2)
               (  0   Z22 )

               ( H11  H12 )
    Q1' H Q2 = (          ),
               (  0   H22 )

  where T11, T22', Z11, Z22', H11 are upper triangular and H22' is
  upper quasi-triangular.

  Then, orthogonal matrices Q3, Q4 and U3 are found, for the
  matrices

    ~     ( T22'  0  )  ~     ( T11'  0  )  ~   (   0   H11 )
    Z11 = (          ), Z22 = (          ), H = (           ),
          (  0   Z11 )        (  0   Z22 )      ( -H22'  0  )

            ~          ~       ~          ~
  such that Z11 := U3' Z11 Q4, Z22 := U3' Z22 Q3 are upper
                 ~          ~
  triangular and H11 := Q3' H Q4 is upper quasi-triangular. The
  following matrices are computed:

    ~          ( -T12'  0  )        ~          (  0   H12 )
    Z12 := U3' (           ) Q3 and H12 := Q3' (          ) Q3.
               (  0    Z12 )                   ( H12'  0  )

  Then, an orthogonal matrix Q and an orthogonal symplectic matrix U
  are found such that the eigenvalues with strictly negative real
  parts of the pencil

          ~    ~          ~    ~           ~    ~
        ( Z11  Z12 )'   ( Z11  Z12 )     ( H11  H12  )
    a J (      ~   ) J' (      ~   ) - b (      ~    )           (3)
        (  0   Z22 )    (  0   Z22 )     (  0  -H11' )

  are moved to the top of this pencil.

  Finally, an orthogonal basis of the right deflating subspace
  and an orthogonal basis of the companion subspace corresponding to
  the eigenvalues with strictly negative real part are computed.
  See also page 11 in [1] for more details.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                                                            3
  The algorithm is numerically backward stable and needs O(N )
  floating point operations.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  This routine does not perform any scaling of the matrices. Scaling
  might sometimes be useful, and it should be done externally.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB03LF EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            NMAX
      PARAMETER          ( NMAX = 50 )
      INTEGER            LDB, LDFG, LDQ, LDU, LDWORK, LDZ, LIWORK
      PARAMETER          ( LDB = NMAX/2, LDFG = NMAX/2, LDQ = 2*NMAX,
     $                     LDU = NMAX,   LDZ  = NMAX,
     $                     LDWORK = 10*NMAX*NMAX +
     $                              MAX( NMAX*NMAX +
     $                                   MAX( NMAX/2 + 252, 432 ),
     $                                   MAX( 8*NMAX +  48, 171 ) ),
     $                     LIWORK = MAX( NMAX + 18, NMAX/2 + 48,
     $                                   5*NMAX/2 + 1 ) )
*
*     .. Local Scalars ..
      CHARACTER          COMPQ, COMPU, ORTH
      INTEGER            I, INFO, IWARN, J, M, N, NEIG
*
*     .. Local Arrays ..
      LOGICAL            BWORK( NMAX/2 )
      INTEGER            IWORK( LIWORK )
      DOUBLE PRECISION   ALPHAI( NMAX/2 ),  ALPHAR( NMAX/2 ),
     $                   B( LDB, NMAX/2 ),    BETA( NMAX/2 ),
     $                   DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ),
     $                   Q( LDQ, 2*NMAX ),  U( LDU, 2*NMAX ),
     $                   Z( LDZ, NMAX )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           MB03LF
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MOD
*
*     .. Executable Statements ..
*
      WRITE( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) COMPQ, COMPU, ORTH, N
      IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
         M = N/2
         READ( NIN, FMT = * ) ( (  Z( I, J ), J = 1, N   ), I = 1, N )
         READ( NIN, FMT = * ) ( (  B( I, J ), J = 1, M   ), I = 1, M )
         READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, M+1 ), I = 1, M )
*        Compute the eigenvalues and orthogonal bases of the right
*        deflating subspace and companion subspace of a real
*        skew-Hamiltonian/Hamiltonian pencil, corresponding to the
*        eigenvalues with strictly negative real part.
         CALL MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG, LDFG,
     $                NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI, BETA, IWORK,
     $                LIWORK, DWORK, LDWORK, BWORK, IWARN, INFO )
*
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE
            WRITE( NOUT, FMT = 99996 )
            DO 10 I = 1, N
               WRITE( NOUT, FMT = 99995 ) ( Z( I, J ), J = 1, N )
   10       CONTINUE
            WRITE( NOUT, FMT = 99994 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M )
            WRITE( NOUT, FMT = 99993 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M )
            WRITE( NOUT, FMT = 99992 )
            WRITE( NOUT, FMT = 99995 ) (   BETA( I ), I = 1, M )
            IF( LSAME( COMPQ, 'C' ) .AND. NEIG.GT.0 ) THEN
               WRITE( NOUT, FMT = 99991 )
               DO 20 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, NEIG )
   20          CONTINUE
            END IF
            IF( LSAME( COMPU, 'C' ) .AND. NEIG.GT.0 ) THEN
               WRITE( NOUT, FMT = 99990 )
               DO 30 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( U( I, J ), J = 1, NEIG )
   30          CONTINUE
            END IF
            IF( LSAME( COMPQ, 'C' ) .OR. LSAME( COMPU, 'C' ) )
     $         WRITE( NOUT, FMT = 99989 ) NEIG
         END IF
      END IF
      STOP
*
99999 FORMAT ( 'MB03LF EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT ( 'INFO on exit from MB03LF = ', I2 )
99996 FORMAT (/'The matrix Z on exit is ' )
99995 FORMAT ( 50( 1X, F8.4 ) )
99994 FORMAT (/'The vector ALPHAR is ' )
99993 FORMAT (/'The vector ALPHAI is ' )
99992 FORMAT (/'The vector BETA is ' )
99991 FORMAT (/'The deflating subspace corresponding to the ',
     $         'eigenvalues with negative real part is ' )
99990 FORMAT (/'The companion subspace corresponding to the ',
     $         'eigenvalues with negative real part is ' )
99989 FORMAT (/'The number of eigenvalues in the initial pencil with ',
     $         'negative real part is ', I2 )
      END
</PRE>
<B>Program Data</B>
<PRE>
MB03LF EXAMPLE PROGRAM DATA
   C   C   P   8
   3.1472    4.5751   -0.7824    1.7874   -2.2308   -0.6126    2.0936    4.5974
   4.0579    4.6489    4.1574    2.5774   -4.5383   -1.1844    2.5469   -1.5961
  -3.7301   -3.4239    2.9221    2.4313   -4.0287    2.6552   -2.2397    0.8527
   4.1338    4.7059    4.5949   -1.0777    3.2346    2.9520    1.7970   -2.7619
   1.3236    4.5717    1.5574    1.5548    1.9483   -3.1313    1.5510    2.5127
  -4.0246   -0.1462   -4.6429   -3.2881   -1.8290   -0.1024   -3.3739   -2.4490
  -2.2150    3.0028    3.4913    2.0605    4.5022   -0.5441   -3.8100    0.0596
   0.4688   -3.5811    4.3399   -4.6817   -4.6555    1.4631   -0.0164    1.9908
   0.6882  -3.3782  -3.3435   1.8921
  -0.3061   2.9428   1.0198   2.4815
  -4.8810  -1.8878  -2.3703  -0.4946
  -1.6288   0.2853   1.5408  -4.1618
  -2.4013  -2.7102   0.3834  -3.9335   3.1730
  -3.1815  -2.3620   4.9613   4.6190   3.6869
   3.6929   0.7970   0.4986  -4.9537  -4.1556
   3.5303   1.2206  -1.4905   0.1325  -1.0022

</PRE>
<B>Program Results</B>
<PRE>
MB03LF EXAMPLE PROGRAM RESULTS

The matrix Z on exit is 
   4.4128   0.1059  -1.8709   1.2963  -4.3448   2.7633   2.3580   2.1931
   0.0000  10.0337  -1.9797   1.8052  -1.0112   1.1335   1.2374   0.3107
   0.0000   0.0000   8.9476   1.8523  -1.8578  -0.5807  -1.4157   1.3007
   0.0000   0.0000   0.0000  -7.0889  -2.1193  -2.1634  -2.4393   0.1148
   0.0765   1.0139   0.0000  -1.5390  -8.3187  -5.0172   0.7738  -2.8626
   1.1884  -0.9225   0.0000   0.2905   0.0000   6.4090   2.1994  -2.5933
  -0.5931   0.1981   0.0000  -0.5280   0.0000   0.0000   4.7155   2.3817
   1.8591  -1.8416   0.0000  -0.0807   0.0000   0.0000   0.0000  -5.3153

The vector ALPHAR is 
   0.7353   0.0000   0.5168  -0.5168

The vector ALPHAI is 
   0.0000   0.7190   0.5610   0.5610

The vector BETA is 
   2.0000   2.8284  11.3137  11.3137

The deflating subspace corresponding to the eigenvalues with negative real part is 
  -0.2509   0.3670   0.0416
  -0.3267  -0.7968  -0.1019
   0.0263   0.0338  -0.5795
  -0.0139  -0.0491  -0.5217
  -0.4637   0.2992  -0.4403
  -0.1345   0.3071  -0.0917
  -0.1364   0.2013   0.3447
  -0.7601  -0.0495   0.2426

The companion subspace corresponding to the eigenvalues with negative real part is 
  -0.3219   0.6590   0.1693
  -0.5216  -0.1829  -0.0689
  -0.0413  -0.4664  -0.1359
   0.1310  -0.1702   0.4543
  -0.3598   0.2660   0.3355
  -0.5082  -0.0512  -0.6035
  -0.3582  -0.4513   0.4649
   0.2991   0.0932  -0.2207

The number of eigenvalues in the initial pencil with negative real part is  3
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>