1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
<HTML>
<HEAD><TITLE>MB03LF - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03LF">MB03LF</A></H2>
<H3>
Eigenvalues and right deflating subspace of a real skew-Hamiltonian/Hamiltonian pencil in factored form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the relevant eigenvalues of a real N-by-N skew-
Hamiltonian/Hamiltonian pencil aS - bH, with
( B F ) ( 0 I )
S = T Z = J Z' J' Z and H = ( ), J = ( ), (1)
( G -B' ) ( -I 0 )
where the notation M' denotes the transpose of the matrix M.
Optionally, if COMPQ = 'C', an orthogonal basis of the right
deflating subspace of aS - bH corresponding to the eigenvalues
with strictly negative real part is computed. Optionally, if
COMPU = 'C', an orthonormal basis of the companion subspace,
range(P_U) [1], which corresponds to the eigenvalues with strictly
negative real part, is computed.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,
$ LDFG, NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI,
$ BETA, IWORK, LIWORK, DWORK, LDWORK, BWORK,
$ IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ, COMPU, ORTH
INTEGER INFO, IWARN, LDB, LDFG, LDQ, LDU, LDWORK, LDZ,
$ LIWORK, N, NEIG
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), B( LDB, * ),
$ BETA( * ), DWORK( * ), FG( LDFG, * ),
$ Q( LDQ, * ), U( LDU, * ), Z( LDZ, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
COMPQ CHARACTER*1
Specifies whether to compute the right deflating subspace
corresponding to the eigenvalues of aS - bH with strictly
negative real part.
= 'N': do not compute the deflating subspace;
= 'C': compute the deflating subspace and store it in the
leading subarray of Q.
COMPU CHARACTER*1
Specifies whether to compute the companion subspace
corresponding to the eigenvalues of aS - bH with strictly
negative real part.
= 'N': do not compute the companion subspace;
= 'C': compute the companion subspace and store it in the
leading subarray of U.
ORTH CHARACTER*1
If COMPQ = 'C' and/or COMPU = 'C', specifies the technique
for computing the orthogonal basis of the deflating
subspace, and/or of the companion subspace, as follows:
= 'P': QR factorization with column pivoting;
= 'S': singular value decomposition.
If COMPQ = 'N' and COMPU = 'N', the ORTH value is not
used.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the pencil aS - bH. N >= 0, even.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, the leading N-by-N part of this array must
contain the non-trivial factor Z in the factorization
S = J Z' J' Z of the skew-Hamiltonian matrix S.
On exit, if COMPQ = 'C' or COMPU = 'C', the leading
N-by-N part of this array contains the transformed upper
~
triangular matrix Z11 (see METHOD), after moving the
eigenvalues with strictly negative real part to the top
of the pencil (3). The strictly lower triangular part is
not zeroed.
If COMPQ = 'N' and COMPU = 'N', the leading N-by-N part of
this array contains the matrix Z obtained by the SLICOT
Library routine MB04AD just before the application of the
periodic QZ algorithm. The elements of the (2,1) block,
i.e., in the rows N/2+1 to N and in the columns 1 to N/2
are not set to zero, but are unchanged on exit.
LDZ INTEGER
The leading dimension of the array Z. LDZ >= MAX(1, N).
B (input) DOUBLE PRECISION array, dimension (LDB, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1, N/2).
FG (input) DOUBLE PRECISION array, dimension (LDFG, N/2+1)
On entry, the leading N/2-by-N/2 lower triangular part of
this array must contain the lower triangular part of the
symmetric matrix G, and the N/2-by-N/2 upper triangular
part of the submatrix in the columns 2 to N/2+1 of this
array must contain the upper triangular part of the
symmetric matrix F.
LDFG INTEGER
The leading dimension of the array FG.
LDFG >= MAX(1, N/2).
NEIG (output) INTEGER
If COMPQ = 'C' or COMPU = 'C', the number of eigenvalues
in aS - bH with strictly negative real part.
Q (output) DOUBLE PRECISION array, dimension (LDQ, 2*N)
On exit, if COMPQ = 'C', the leading N-by-NEIG part of
this array contains an orthogonal basis of the right
deflating subspace corresponding to the eigenvalues of
aS - bH with strictly negative real part. The remaining
part of this array is used as workspace.
If COMPQ = 'N', this array is not referenced.
LDQ INTEGER
The leading dimension of the array Q.
LDQ >= 1, if COMPQ = 'N';
LDQ >= MAX(1, 2*N), if COMPQ = 'C'.
U (output) DOUBLE PRECISION array, dimension (LDU, 2*N)
On exit, if COMPU = 'C', the leading N-by-NEIG part of
this array contains an orthogonal basis of the companion
subspace corresponding to the eigenvalues of aS - bH with
strictly negative real part. The remaining part of this
array is used as workspace.
If COMPU = 'N', this array is not referenced.
LDU INTEGER
The leading dimension of the array U.
LDU >= 1, if COMPU = 'N';
LDU >= MAX(1, N), if COMPU = 'C'.
ALPHAR (output) DOUBLE PRECISION array, dimension (N/2)
The real parts of each scalar alpha defining an eigenvalue
of the pencil aS - bH.
ALPHAI (output) DOUBLE PRECISION array, dimension (N/2)
The imaginary parts of each scalar alpha defining an
eigenvalue of the pencil aS - bH.
If ALPHAI(j) is zero, then the j-th eigenvalue is real.
BETA (output) DOUBLE PRECISION array, dimension (N/2)
The scalars beta that define the eigenvalues of the pencil
aS - bH.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the pencil
aS - bH, in the form lambda = alpha/beta. Since lambda may
overflow, the ratios should not, in general, be computed.
Due to the skew-Hamiltonian/Hamiltonian structure of the
pencil, for every eigenvalue lambda, -lambda is also an
eigenvalue, and thus it has only to be saved once in
ALPHAR, ALPHAI and BETA.
Specifically, only eigenvalues with imaginary parts
greater than or equal to zero are stored; their conjugate
eigenvalues are not stored. If imaginary parts are zero
(i.e., for real eigenvalues), only positive eigenvalues
are stored. The remaining eigenvalues have opposite signs.
As a consequence, pairs of complex eigenvalues, stored in
consecutive locations, are not complex conjugate.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
On exit, if INFO = -20, IWORK(1) returns the minimum value
of LIWORK.
LIWORK INTEGER
The dimension of the array IWORK.
LIWORK >= N + 18, if COMPQ = 'N' and COMPU = 'N';
LIWORK >= MAX( 2*N+1, 48 ), otherwise.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
On exit, if INFO = -22, DWORK(1) returns the minimum value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= b*N*N + 3*N*N/2 + MAX( 6*N, 54 ),
if COMPQ = 'N' and COMPU = 'N';
LDWORK >= d*N*N + MAX( N/2+252, 432 ), otherwise, where
b = a, d = c, if COMPU = 'N',
b = a+1, d = c+1, if COMPU = 'C', and
a = 2, c = 7, if COMPQ = 'N',
a = 4, c = 10, if COMPQ = 'C'.
For good performance LDWORK should be generally larger.
If LDWORK = -1 a workspace query is assumed; the
routine only calculates the optimal size of the DWORK
array, returns this value as the first entry of the DWORK
array, and no error message is issued by XERBLA.
BWORK LOGICAL array, dimension (N/2)
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: some eigenvalues might be unreliable. More details
can be obtained by running the SLICOT routine MB04AD.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
< 0: if INFO = -i, the i-th argument had an illegal value;
= 1: periodic QZ iteration failed in the SLICOT Library
routines MB04AD, MB04CD or MB03BB (QZ iteration did
not converge or computation of the shifts failed);
= 2: standard QZ iteration failed in the SLICOT Library
routines MB04CD or MB03CD (called by MB03ID);
= 3: a numerically singular matrix was found in the SLICOT
Library routine MB03GD (called by MB03ID);
= 4: the singular value decomposition failed in the LAPACK
routine DGESVD (for ORTH = 'S').
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
First, the decompositions of S and H are computed via orthogonal
matrices Q1 and Q2 and orthogonal symplectic matrices U1 and U2,
such that
( T11 T12 )
Q1' T U1 = Q1' J Z' J' U1 = ( ),
( 0 T22 )
( Z11 Z12 )
U2' Z Q2 = ( ), (2)
( 0 Z22 )
( H11 H12 )
Q1' H Q2 = ( ),
( 0 H22 )
where T11, T22', Z11, Z22', H11 are upper triangular and H22' is
upper quasi-triangular.
Then, orthogonal matrices Q3, Q4 and U3 are found, for the
matrices
~ ( T22' 0 ) ~ ( T11' 0 ) ~ ( 0 H11 )
Z11 = ( ), Z22 = ( ), H = ( ),
( 0 Z11 ) ( 0 Z22 ) ( -H22' 0 )
~ ~ ~ ~
such that Z11 := U3' Z11 Q4, Z22 := U3' Z22 Q3 are upper
~ ~
triangular and H11 := Q3' H Q4 is upper quasi-triangular. The
following matrices are computed:
~ ( -T12' 0 ) ~ ( 0 H12 )
Z12 := U3' ( ) Q3 and H12 := Q3' ( ) Q3.
( 0 Z12 ) ( H12' 0 )
Then, an orthogonal matrix Q and an orthogonal symplectic matrix U
are found such that the eigenvalues with strictly negative real
parts of the pencil
~ ~ ~ ~ ~ ~
( Z11 Z12 )' ( Z11 Z12 ) ( H11 H12 )
a J ( ~ ) J' ( ~ ) - b ( ~ ) (3)
( 0 Z22 ) ( 0 Z22 ) ( 0 -H11' )
are moved to the top of this pencil.
Finally, an orthogonal basis of the right deflating subspace
and an orthogonal basis of the companion subspace corresponding to
the eigenvalues with strictly negative real part are computed.
See also page 11 in [1] for more details.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
Eigenproblems.
Tech. Rep., Technical University Chemnitz, Germany,
Nov. 2007.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm is numerically backward stable and needs O(N )
floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
This routine does not perform any scaling of the matrices. Scaling
might sometimes be useful, and it should be done externally.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB03LF EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 50 )
INTEGER LDB, LDFG, LDQ, LDU, LDWORK, LDZ, LIWORK
PARAMETER ( LDB = NMAX/2, LDFG = NMAX/2, LDQ = 2*NMAX,
$ LDU = NMAX, LDZ = NMAX,
$ LDWORK = 10*NMAX*NMAX +
$ MAX( NMAX*NMAX +
$ MAX( NMAX/2 + 252, 432 ),
$ MAX( 8*NMAX + 48, 171 ) ),
$ LIWORK = MAX( NMAX + 18, NMAX/2 + 48,
$ 5*NMAX/2 + 1 ) )
*
* .. Local Scalars ..
CHARACTER COMPQ, COMPU, ORTH
INTEGER I, INFO, IWARN, J, M, N, NEIG
*
* .. Local Arrays ..
LOGICAL BWORK( NMAX/2 )
INTEGER IWORK( LIWORK )
DOUBLE PRECISION ALPHAI( NMAX/2 ), ALPHAR( NMAX/2 ),
$ B( LDB, NMAX/2 ), BETA( NMAX/2 ),
$ DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ),
$ Q( LDQ, 2*NMAX ), U( LDU, 2*NMAX ),
$ Z( LDZ, NMAX )
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
*
* .. External Subroutines ..
EXTERNAL MB03LF
*
* .. Intrinsic Functions ..
INTRINSIC MAX, MOD
*
* .. Executable Statements ..
*
WRITE( NOUT, FMT = 99999 )
* Skip the heading in the data file and read in the data.
READ( NIN, FMT = * )
READ( NIN, FMT = * ) COMPQ, COMPU, ORTH, N
IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN
WRITE( NOUT, FMT = 99998 ) N
ELSE
M = N/2
READ( NIN, FMT = * ) ( ( Z( I, J ), J = 1, N ), I = 1, N )
READ( NIN, FMT = * ) ( ( B( I, J ), J = 1, M ), I = 1, M )
READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, M+1 ), I = 1, M )
* Compute the eigenvalues and orthogonal bases of the right
* deflating subspace and companion subspace of a real
* skew-Hamiltonian/Hamiltonian pencil, corresponding to the
* eigenvalues with strictly negative real part.
CALL MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG, LDFG,
$ NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI, BETA, IWORK,
$ LIWORK, DWORK, LDWORK, BWORK, IWARN, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE( NOUT, FMT = 99997 ) INFO
ELSE
WRITE( NOUT, FMT = 99996 )
DO 10 I = 1, N
WRITE( NOUT, FMT = 99995 ) ( Z( I, J ), J = 1, N )
10 CONTINUE
WRITE( NOUT, FMT = 99994 )
WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M )
WRITE( NOUT, FMT = 99993 )
WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M )
WRITE( NOUT, FMT = 99992 )
WRITE( NOUT, FMT = 99995 ) ( BETA( I ), I = 1, M )
IF( LSAME( COMPQ, 'C' ) .AND. NEIG.GT.0 ) THEN
WRITE( NOUT, FMT = 99991 )
DO 20 I = 1, N
WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, NEIG )
20 CONTINUE
END IF
IF( LSAME( COMPU, 'C' ) .AND. NEIG.GT.0 ) THEN
WRITE( NOUT, FMT = 99990 )
DO 30 I = 1, N
WRITE( NOUT, FMT = 99995 ) ( U( I, J ), J = 1, NEIG )
30 CONTINUE
END IF
IF( LSAME( COMPQ, 'C' ) .OR. LSAME( COMPU, 'C' ) )
$ WRITE( NOUT, FMT = 99989 ) NEIG
END IF
END IF
STOP
*
99999 FORMAT ( 'MB03LF EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT ( 'INFO on exit from MB03LF = ', I2 )
99996 FORMAT (/'The matrix Z on exit is ' )
99995 FORMAT ( 50( 1X, F8.4 ) )
99994 FORMAT (/'The vector ALPHAR is ' )
99993 FORMAT (/'The vector ALPHAI is ' )
99992 FORMAT (/'The vector BETA is ' )
99991 FORMAT (/'The deflating subspace corresponding to the ',
$ 'eigenvalues with negative real part is ' )
99990 FORMAT (/'The companion subspace corresponding to the ',
$ 'eigenvalues with negative real part is ' )
99989 FORMAT (/'The number of eigenvalues in the initial pencil with ',
$ 'negative real part is ', I2 )
END
</PRE>
<B>Program Data</B>
<PRE>
MB03LF EXAMPLE PROGRAM DATA
C C P 8
3.1472 4.5751 -0.7824 1.7874 -2.2308 -0.6126 2.0936 4.5974
4.0579 4.6489 4.1574 2.5774 -4.5383 -1.1844 2.5469 -1.5961
-3.7301 -3.4239 2.9221 2.4313 -4.0287 2.6552 -2.2397 0.8527
4.1338 4.7059 4.5949 -1.0777 3.2346 2.9520 1.7970 -2.7619
1.3236 4.5717 1.5574 1.5548 1.9483 -3.1313 1.5510 2.5127
-4.0246 -0.1462 -4.6429 -3.2881 -1.8290 -0.1024 -3.3739 -2.4490
-2.2150 3.0028 3.4913 2.0605 4.5022 -0.5441 -3.8100 0.0596
0.4688 -3.5811 4.3399 -4.6817 -4.6555 1.4631 -0.0164 1.9908
0.6882 -3.3782 -3.3435 1.8921
-0.3061 2.9428 1.0198 2.4815
-4.8810 -1.8878 -2.3703 -0.4946
-1.6288 0.2853 1.5408 -4.1618
-2.4013 -2.7102 0.3834 -3.9335 3.1730
-3.1815 -2.3620 4.9613 4.6190 3.6869
3.6929 0.7970 0.4986 -4.9537 -4.1556
3.5303 1.2206 -1.4905 0.1325 -1.0022
</PRE>
<B>Program Results</B>
<PRE>
MB03LF EXAMPLE PROGRAM RESULTS
The matrix Z on exit is
4.4128 0.1059 -1.8709 1.2963 -4.3448 2.7633 2.3580 2.1931
0.0000 10.0337 -1.9797 1.8052 -1.0112 1.1335 1.2374 0.3107
0.0000 0.0000 8.9476 1.8523 -1.8578 -0.5807 -1.4157 1.3007
0.0000 0.0000 0.0000 -7.0889 -2.1193 -2.1634 -2.4393 0.1148
0.0765 1.0139 0.0000 -1.5390 -8.3187 -5.0172 0.7738 -2.8626
1.1884 -0.9225 0.0000 0.2905 0.0000 6.4090 2.1994 -2.5933
-0.5931 0.1981 0.0000 -0.5280 0.0000 0.0000 4.7155 2.3817
1.8591 -1.8416 0.0000 -0.0807 0.0000 0.0000 0.0000 -5.3153
The vector ALPHAR is
0.7353 0.0000 0.5168 -0.5168
The vector ALPHAI is
0.0000 0.7190 0.5610 0.5610
The vector BETA is
2.0000 2.8284 11.3137 11.3137
The deflating subspace corresponding to the eigenvalues with negative real part is
-0.2509 0.3670 0.0416
-0.3267 -0.7968 -0.1019
0.0263 0.0338 -0.5795
-0.0139 -0.0491 -0.5217
-0.4637 0.2992 -0.4403
-0.1345 0.3071 -0.0917
-0.1364 0.2013 0.3447
-0.7601 -0.0495 0.2426
The companion subspace corresponding to the eigenvalues with negative real part is
-0.3219 0.6590 0.1693
-0.5216 -0.1829 -0.0689
-0.0413 -0.4664 -0.1359
0.1310 -0.1702 0.4543
-0.3598 0.2660 0.3355
-0.5082 -0.0512 -0.6035
-0.3582 -0.4513 0.4649
0.2991 0.0932 -0.2207
The number of eigenvalues in the initial pencil with negative real part is 3
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|