File: MB03LZ.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (504 lines) | stat: -rw-r--r-- 20,532 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
<HTML>
<HEAD><TITLE>MB03LZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03LZ">MB03LZ</A></H2>
<H3>
Eigenvalues and right deflating subspace of a complex skew-Hamiltonian/Hamiltonian pencil
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/
  Hamiltonian pencil aS - bH, with

        (  A  D  )         (  B  F  )
    S = (        ) and H = (        ).                           (1)
        (  E  A' )         (  G -B' )

  The structured Schur form of the embedded real skew-Hamiltonian/
  skew-Hamiltonian pencil aB_S - bB_T, defined as

          (  Re(A)  -Im(A)  |  Re(D)  -Im(D)  )
          (                 |                 )
          (  Im(A)   Re(A)  |  Im(D)   Re(D)  )
          (                 |                 )
    B_S = (-----------------+-----------------) , and
          (                 |                 )
          (  Re(E)  -Im(E)  |  Re(A')  Im(A') )
          (                 |                 )
          (  Im(E)   Re(E)  | -Im(A')  Re(A') )
                                                                 (2)
          ( -Im(B)  -Re(B)  | -Im(F)  -Re(F)  )
          (                 |                 )
          (  Re(B)  -Im(B)  |  Re(F)  -Im(F)  )
          (                 |                 )
    B_T = (-----------------+-----------------) ,  T = i*H,
          (                 |                 )
          ( -Im(G)  -Re(G)  | -Im(B')  Re(B') )
          (                 |                 )
          (  Re(G)  -Im(G)  | -Re(B') -Im(B') )

  is determined and used to compute the eigenvalues. The notation M'
  denotes the conjugate transpose of the matrix M. Optionally,
  if COMPQ = 'C', an orthonormal basis of the right deflating
  subspace of the pencil aS - bH, corresponding to the eigenvalues
  with strictly negative real part, is computed. Namely, after
  transforming aB_S - bB_H by unitary matrices, we have

             ( BA  BD  )              ( BB  BF  )
    B_Sout = (         ) and B_Hout = (         ),               (3)
             (  0  BA' )              (  0 -BB' )

  and the eigenvalues with strictly negative real part of the
  complex pencil aB_Sout - bB_Hout are moved to the top. The
  embedding doubles the multiplicities of the eigenvalues of the
  pencil aS - bH.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03LZ( COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,
     $                   LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA,
     $                   IWORK, DWORK, LDWORK, ZWORK, LZWORK, BWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, ORTH
      INTEGER            INFO, LDA, LDB, LDDE, LDFG, LDQ, LDWORK,
     $                   LZWORK, N, NEIG
C     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ), DWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), DE( LDDE, * ),
     $                   FG( LDFG, * ), Q( LDQ, * ), ZWORK( * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  COMPQ   CHARACTER*1
          Specifies whether to compute the deflating subspace
          corresponding to the eigenvalues of aS - bH with strictly
          negative real part.
          = 'N': do not compute the deflating subspace; compute the
                 eigenvalues only;
          = 'C': compute the deflating subspace and store it in the
                 leading subarray of Q.

  ORTH    CHARACTER*1
          If COMPQ = 'C', specifies the technique for computing an
          orthonormal basis of the deflating subspace, as follows:
          = 'P':  QR factorization with column pivoting;
          = 'S':  singular value decomposition.
          If COMPQ = 'N', the ORTH value is not used.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil aS - bH.  N &gt;= 0, even.

  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix A.
          On exit, if COMPQ = 'C', the leading N-by-N part of this
          array contains the upper triangular matrix BA in (3) (see
          also METHOD). The strictly lower triangular part is not
          zeroed; it is preserved in the leading N/2-by-N/2 part.
          If COMPQ = 'N', this array is unchanged on exit.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1, N).

  DE      (input/output) COMPLEX*16 array, dimension (LDDE, N)
          On entry, the leading N/2-by-N/2 lower triangular part of
          this array must contain the lower triangular part of the
          skew-Hermitian matrix E, and the N/2-by-N/2 upper
          triangular part of the submatrix in the columns 2 to N/2+1
          of this array must contain the upper triangular part of
          the skew-Hermitian matrix D.
          On exit, if COMPQ = 'C', the leading N-by-N part of this
          array contains the skew-Hermitian matrix BD in (3) (see
          also METHOD). The strictly lower triangular part of the
          input matrix is preserved.
          If COMPQ = 'N', this array is unchanged on exit.

  LDDE    INTEGER
          The leading dimension of the array DE.  LDDE &gt;= MAX(1, N).

  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix B.
          On exit, if COMPQ = 'C', the leading N-by-N part of this
          array contains the upper triangular matrix BB in (3) (see
          also METHOD). The strictly lower triangular part is not
          zeroed; the elements below the first subdiagonal of the
          input matrix are preserved.
          If COMPQ = 'N', this array is unchanged on exit.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= MAX(1, N).

  FG      (input/output) COMPLEX*16 array, dimension (LDFG, N)
          On entry, the leading N/2-by-N/2 lower triangular part of
          this array must contain the lower triangular part of the
          Hermitian matrix G, and the N/2-by-N/2 upper triangular
          part of the submatrix in the columns 2 to N/2+1 of this
          array must contain the upper triangular part of the
          Hermitian matrix F.
          On exit, if COMPQ = 'C', the leading N-by-N part of this
          array contains the Hermitian matrix BF in (3) (see also
          METHOD). The strictly lower triangular part of the input
          matrix is preserved. The diagonal elements might have tiny
          imaginary parts.
          If COMPQ = 'N', this array is unchanged on exit.

  LDFG    INTEGER
          The leading dimension of the array FG.  LDFG &gt;= MAX(1, N).

  NEIG    (output) INTEGER
          If COMPQ = 'C', the number of eigenvalues in aS - bH with
          strictly negative real part.

  Q       (output) COMPLEX*16 array, dimension (LDQ, 2*N)
          On exit, if COMPQ = 'C', the leading N-by-NEIG part of
          this array contains an orthonormal basis of the right
          deflating subspace corresponding to the eigenvalues of the
          pencil aS - bH with strictly negative real part.
          The remaining entries are meaningless.
          If COMPQ = 'N', this array is not referenced.

  LDQ     INTEGER
          The leading dimension of the array Q.
          LDQ &gt;= 1,           if COMPQ = 'N';
          LDQ &gt;= MAX(1, 2*N), if COMPQ = 'C'.

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
          The real parts of each scalar alpha defining an eigenvalue
          of the pencil aS - bH.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of the pencil aS - bH.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real.

  BETA    (output) DOUBLE PRECISION array, dimension (N)
          The scalars beta that define the eigenvalues of the pencil
          aS - bH.
          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
          beta = BETA(j) represent the j-th eigenvalue of the pencil
          aS - bH, in the form lambda = alpha/beta. Since lambda may
          overflow, the ratios should not, in general, be computed.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N+1)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK.
          On exit, if INFO = -20, DWORK(1) returns the minimum value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= MAX( 4*N*N + 2*N + MAX(3,N) ), if COMPQ = 'N';
          LDWORK &gt;= MAX( 1, 11*N*N + 2*N ),        if COMPQ = 'C'.
          For good performance LDWORK should be generally larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

  ZWORK   COMPLEX*16 array, dimension (LZWORK)
          On exit, if INFO = 0, ZWORK(1) returns the optimal LZWORK.
          On exit, if INFO = -22, ZWORK(1) returns the minimum value
          of LZWORK.

  LZWORK  INTEGER
          The dimension of the array ZWORK.
          LZWORK &gt;= 1,       if COMPQ = 'N';
          LZWORK &gt;= 8*N + 4, if COMPQ = 'C'.
          For good performance LZWORK should be generally larger.

          If LZWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          ZWORK array, returns this value as the first entry of
          the ZWORK array, and no error message related to LZWORK
          is issued by XERBLA.

  BWORK   LOGICAL array, dimension (LBWORK)
          LBWORK &gt;= 0,     if COMPQ = 'N';
          LBWORK &gt;= N - 1, if COMPQ = 'C'.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          &lt; 0: if INFO = -i, the i-th argument had an illegal value;
          = 1: QZ iteration failed in the SLICOT Library routine
               MB04FD (QZ iteration did not converge or computation
               of the shifts failed);
          = 2: QZ iteration failed in the LAPACK routine ZHGEQZ when
               trying to triangularize the 2-by-2 blocks;
          = 3: the singular value decomposition failed in the LAPACK
               routine ZGESVD (for ORTH = 'S');
          = 4: warning: the pencil is numerically singular.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  First, T = i*H is set. Then, the embeddings, B_S and B_T, of the
  matrices S and T, are determined and, subsequently, the SLICOT
  Library routine MB04FD is applied to compute the structured Schur
  form, i.e., the factorizations

  ~                     (  S11  S12  )
  B_S = J Q' J' B_S Q = (            ) and
                        (   0   S11' )

  ~                     (  T11  T12  )           (  0  I  )
  B_T = J Q' J' B_T Q = (            ), with J = (        ),
                        (   0   T11' )           ( -I  0  )

  where Q is real orthogonal, S11 is upper triangular, and T11 is
  upper quasi-triangular.

  Second, the SLICOT Library routine MB03JZ is applied, to compute a
                 ~
  unitary matrix Q, such that

                     ~    ~
    ~     ~   ~   (  S11  S12  )
  J Q' J' B_S Q = (       ~    ) =: B_Sout,
                  (   0   S11' )

    ~        ~    ~   (  H11  H12  )
  J Q' J'(-i*B_T) Q = (            ) =: B_Hout,
                      (   0  -H11' )
       ~                                               ~       ~
  with S11, H11 upper triangular, and such that Spec_-(B_S, -i*B_T)
  is contained in the spectrum of the 2*NEIG-by-2*NEIG leading
                       ~
  principal subpencil aS11 - bH11.

  Finally, the right deflating subspace is computed.
  See also page 22 in [1] for more details.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                                                            3
  The algorithm is numerically backward stable and needs O(N )
  complex floating point operations.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  This routine does not perform any scaling of the matrices. Scaling
  might sometimes be useful, and it should be done externally.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB03LZ EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            NMAX
      PARAMETER          ( NMAX = 50 )
      INTEGER            LDA, LDB, LDDE, LDFG, LDQ, LDWORK, LZWORK
      PARAMETER          ( LDA = NMAX, LDB = NMAX, LDDE = NMAX,
     $                     LDFG = NMAX, LDQ = 2*NMAX,
     $                     LDWORK = 11*NMAX*NMAX + 2*NMAX,
     $                     LZWORK =  8*NMAX + 4 )
*
*     .. Local Scalars ..
      CHARACTER*1        COMPQ, ORTH
      INTEGER            I, INFO, J, N, NEIG
*
*     .. Local Arrays ..
      COMPLEX*16         A( LDA, NMAX ), B( LDB, NMAX ),
     $                   DE( LDDE, NMAX ), FG( LDFG, NMAX ),
     $                   Q( LDQ, 2*NMAX ), ZWORK( LZWORK )
      DOUBLE PRECISION   ALPHAI( NMAX ), ALPHAR( NMAX ), BETA( NMAX ),
     $                   DWORK( LDWORK )
      INTEGER            IWORK( NMAX + 1 )
      LOGICAL            BWORK( NMAX )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           MB03LZ
*
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*
*     .. Executable statements ..
*
      WRITE( NOUT, FMT = 99999 )
*
*     Skip first line in data file.
*
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) COMPQ, ORTH, N
      READ( NIN, FMT = * ) ( (  A( I, J ), J = 1, N/2 ),   I = 1, N/2 )
      READ( NIN, FMT = * ) ( ( DE( I, J ), J = 1, N/2+1 ), I = 1, N/2 )
      READ( NIN, FMT = * ) ( (  B( I, J ), J = 1, N/2 ),   I = 1, N/2 )
      READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, N/2+1 ), I = 1, N/2 )
      IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
*        Compute the eigenvalues and an orthogonal basis of the right
*        deflating subspace of a complex skew-Hamiltonian/Hamiltonian
*        pencil, corresponding to the eigenvalues with strictly negative
*        real part.
         CALL MB03LZ( COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,
     $                LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA, IWORK,
     $                DWORK, LDWORK, ZWORK, LZWORK, BWORK, INFO )
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE
            IF( LSAME( COMPQ, 'C' ) ) THEN
               WRITE( NOUT, FMT = 99996 )
               DO 10 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( A( I, J ), J = 1, N )
   10          CONTINUE
               WRITE( NOUT, FMT = 99994 )
               DO 20 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( DE( I, J ), J = 1, N )
   20          CONTINUE
               WRITE( NOUT, FMT = 99993 )
               DO 30 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( B( I, J ), J = 1, N )
   30          CONTINUE
               WRITE( NOUT, FMT = 99992 )
               DO 40 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( FG( I, J ), J = 1, N )
   40          CONTINUE
            END IF
            WRITE( NOUT, FMT = 99991 )
            WRITE( NOUT, FMT = 99990 ) ( ALPHAR( I ), I = 1, N )
            WRITE( NOUT, FMT = 99989 )
            WRITE( NOUT, FMT = 99990 ) ( ALPHAI( I ), I = 1, N )
            WRITE( NOUT, FMT = 99988 )
            WRITE( NOUT, FMT = 99990 ) (   BETA( I ), I = 1, N )
            IF( LSAME( COMPQ, 'C' ) .AND. NEIG.GT.0 ) THEN
               WRITE( NOUT, FMT = 99987 )
               DO 50 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, NEIG )
   50          CONTINUE
            END IF
            IF( LSAME( COMPQ, 'C' ) )
     $         WRITE( NOUT, FMT = 99986 ) NEIG
         END IF
      END IF
      STOP
99999 FORMAT ( 'MB03LZ EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT ( 'INFO on exit from MB03LZ = ', I2 )
99996 FORMAT (/'The matrix A on exit is ' )
99995 FORMAT ( 20( 1X, F9.4, SP, F9.4, S, 'i ') )
99994 FORMAT (/'The matrix D on exit is ' )
99993 FORMAT (/'The matrix B on exit is ' )
99992 FORMAT (/'The matrix F on exit is ' )
99991 FORMAT ( 'The vector ALPHAR is ' )
99990 FORMAT ( 50( 1X, F8.4 ) )
99989 FORMAT (/'The vector ALPHAI is ' )
99988 FORMAT (/'The vector BETA is ' )
99987 FORMAT (/'The deflating subspace corresponding to the ',
     $         'eigenvalues with negative real part is ' )
99986 FORMAT (/'The number of eigenvalues in the initial pencil with ',
     $         'negative real part is ', I2 )
      END
</PRE>
<B>Program Data</B>
<PRE>
MB03LZ EXAMPLE PROGRAM DATA
   C   P   4
   (0.0604,0.6568)   (0.5268,0.2919)
   (0.3992,0.6279)   (0.4167,0.4316)
        (0,0.4896)        (0,0.9516)   (0.3724,0.0526)
   (0.9840,0.3394)        (0,0.9203)        (0,0.7378)
   (0.2691,0.4177)   (0.5478,0.3014)
   (0.4228,0.9830)   (0.9427,0.7010)
    0.6663            0.6981           (0.1781,0.8818)
   (0.5391,0.1711)    0.6665            0.1280         
</PRE>
<B>Program Results</B>
<PRE>
MB03LZ EXAMPLE PROGRAM RESULTS

The matrix A on exit is 
    0.7430  +0.0000i    -0.1431  -0.1304i    -0.4169  -0.0495i     0.0650  -0.0262i 
    0.3992  +0.6279i     0.7398  -1.2647i    -0.0861  -0.1075i     0.2826  +0.7725i 
    0.0000  +0.0000i     0.0000  +0.0000i     1.4799  +0.1442i    -0.1094  -0.1061i 
    0.0000  +0.0000i     0.0000  +0.0000i     0.0000  +0.0000i     0.6816  +0.2278i 

The matrix D on exit is 
    0.0000  -0.6858i    -0.3122  -0.1018i    -0.7813  -0.4163i    -0.1343  +0.3259i 
    0.9840  +0.3394i     0.0000  +0.1465i    -0.1678  +0.2971i    -0.0728  -0.6524i 
    0.0000  +0.0000i     0.0000  +0.0000i    -0.0000  +0.2979i    -0.0728  +0.3971i 
    0.0000  +0.0000i     0.0000  +0.0000i     0.0000  +0.0000i     0.0000  +0.2414i 

The matrix B on exit is 
   -1.5832  +0.5069i    -0.0819  -0.1073i     0.7749  -0.0519i     0.0635  -0.0052i 
    0.0000  +0.0000i    -0.1916  -0.0106i    -0.0074  +0.0165i    -0.1546  -0.6817i 
    0.0000  +0.0000i     0.0000  +0.0000i    -0.0716  -0.1811i     0.3146  +0.1558i 
    0.0000  +0.0000i     0.0000  +0.0000i     0.0000  +0.0000i    -1.6078  -0.0203i 

The matrix F on exit is 
    0.3382   0.0000i    -0.0622  +0.8488i     0.0042  +0.9053i    -0.1584  +0.0726i 
    0.5391  +0.1711i    -0.5888  +0.0000i     0.4089  +0.2018i    -0.6913  -0.5011i 
    0.0000  +0.0000i     0.0000  +0.0000i    -0.2712  +0.0000i     0.5114  +0.3726i 
    0.0000  +0.0000i     0.0000  +0.0000i     0.0000  +0.0000i     0.5218  +0.0000i 
The vector ALPHAR is 
  -1.5832   1.5832  -0.0842   0.0842

The vector ALPHAI is 
   0.5069   0.5069  -0.1642  -0.1642

The vector BETA is 
   0.7430   0.7430   1.4085   1.4085

The deflating subspace corresponding to the eigenvalues with negative real part is 
   -0.0793  -0.1949i     0.4845  -0.5472i 
    0.4349  +0.1710i    -0.2878  +0.0952i 
   -0.1266  +0.1505i     0.1364  -0.4776i 
   -0.5035  +0.6671i     0.1628  +0.3174i 

The number of eigenvalues in the initial pencil with negative real part is  2
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>