1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
<HTML>
<HEAD><TITLE>MB03PD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03PD">MB03PD</A></H2>
<H3>
Matrix rank determination by incremental condition estimation (row pivoting)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute (optionally) a rank-revealing RQ factorization of a
real general M-by-N matrix A, which may be rank-deficient,
and estimate its effective rank using incremental condition
estimation.
The routine uses an RQ factorization with row pivoting:
P * A = R * Q, where R = [ R11 R12 ],
[ 0 R22 ]
with R22 defined as the largest trailing submatrix whose estimated
condition number is less than 1/RCOND. The order of R22, RANK,
is the effective rank of A.
MB03PD does not perform any scaling of the matrix A.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03PD( JOBRQ, M, N, A, LDA, JPVT, RCOND, SVLMAX, TAU,
$ RANK, SVAL, DWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOBRQ
INTEGER INFO, LDA, M, N, RANK
DOUBLE PRECISION RCOND, SVLMAX
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), SVAL( 3 ), TAU( * ), DWORK( * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOBRQ CHARACTER*1
= 'R': Perform an RQ factorization with row pivoting;
= 'N': Do not perform the RQ factorization (but assume
that it has been done outside).
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension
( LDA, N )
On entry with JOBRQ = 'R', the leading M-by-N part of this
array must contain the given matrix A.
On exit with JOBRQ = 'R',
if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:N) contains the M-by-M upper triangular
matrix R;
if M >= N, the elements on and above the (M-N)-th
subdiagonal contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors (see METHOD).
On entry and on exit with JOBRQ = 'N',
if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:N) must contain the M-by-M upper triangular
matrix R;
if M >= N, the elements on and above the (M-N)-th
subdiagonal must contain the M-by-N upper trapezoidal
matrix R;
the remaining elements are not referenced.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension ( M )
On entry with JOBRQ = 'R', if JPVT(i) <> 0, the i-th row
of A is a final row, otherwise it is a free row. Before
the RQ factorization of A, all final rows are permuted
to the trailing positions; only the remaining free rows
are moved as a result of row pivoting during the
factorization. For rank determination it is preferable
that all rows be free.
On exit with JOBRQ = 'R', if JPVT(i) = k, then the i-th
row of P*A was the k-th row of A.
Array JPVT is not referenced when JOBRQ = 'N'.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest trailing triangular
submatrix R22 in the RQ factorization with pivoting of A,
whose estimated condition number is less than 1/RCOND.
RCOND >= 0.
NOTE that when SVLMAX > 0, the estimated rank could be
less than that defined above (see SVLMAX).
SVLMAX (input) DOUBLE PRECISION
If A is a submatrix of another matrix B, and the rank
decision should be related to that matrix, then SVLMAX
should be an estimate of the largest singular value of B
(for instance, the Frobenius norm of B). If this is not
the case, the input value SVLMAX = 0 should work.
SVLMAX >= 0.
TAU (output) DOUBLE PRECISION array, dimension ( MIN( M, N ) )
On exit with JOBRQ = 'R', the leading min(M,N) elements of
TAU contain the scalar factors of the elementary
reflectors.
Array TAU is not referenced when JOBRQ = 'N'.
RANK (output) INTEGER
The effective (estimated) rank of A, i.e. the order of
the submatrix R22.
SVAL (output) DOUBLE PRECISION array, dimension ( 3 )
The estimates of some of the singular values of the
triangular factor R:
SVAL(1): largest singular value of
R(M-RANK+1:M,N-RANK+1:N);
SVAL(2): smallest singular value of
R(M-RANK+1:M,N-RANK+1:N);
SVAL(3): smallest singular value of R(M-RANK:M,N-RANK:N),
if RANK < MIN( M, N ), or of
R(M-RANK+1:M,N-RANK+1:N), otherwise.
If the triangular factorization is a rank-revealing one
(which will be the case if the trailing rows were well-
conditioned), then SVAL(1) will also be an estimate for
the largest singular value of A, and SVAL(2) and SVAL(3)
will be estimates for the RANK-th and (RANK+1)-st singular
values of A, respectively.
By examining these values, one can confirm that the rank
is well defined with respect to the chosen value of RCOND.
The ratio SVAL(1)/SVAL(2) is an estimate of the condition
number of R(M-RANK+1:M,N-RANK+1:N).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension ( LDWORK )
where LDWORK = max( 1, 3*M ), if JOBRQ = 'R';
LDWORK = max( 1, 3*min( M, N ) ), if JOBRQ = 'N'.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine computes or uses an RQ factorization with row
pivoting of A, P * A = R * Q, with R defined above, and then
finds the largest trailing submatrix whose estimated condition
number is less than 1/RCOND, taking the possible positive value of
SVLMAX into account. This is performed using an adaptation of the
LAPACK incremental condition estimation scheme and a slightly
modified rank decision test.
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit
in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth row of P is the ith canonical unit vector.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Bischof, C.H. and P. Tang.
Generalizing Incremental Condition Estimation.
LAPACK Working Notes 32, Mathematics and Computer Science
Division, Argonne National Laboratory, UT, CS-91-132,
May 1991.
[2] Bischof, C.H. and P. Tang.
Robust Incremental Condition Estimation.
LAPACK Working Notes 33, Mathematics and Computer Science
Division, Argonne National Laboratory, UT, CS-91-133,
May 1991.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB03PD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX
PARAMETER ( NMAX = 10, MMAX = 10 )
INTEGER LDA
PARAMETER ( LDA = NMAX )
INTEGER LDTAU
PARAMETER ( LDTAU = MIN(MMAX,NMAX) )
INTEGER LDWORK
PARAMETER ( LDWORK = 3*MMAX )
* .. Local Scalars ..
CHARACTER*1 JOBRQ
INTEGER I, INFO, J, M, N, RANK
DOUBLE PRECISION RCOND, SVAL(3), SVLMAX
* ..
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), TAU(LDTAU)
INTEGER JPVT(MMAX)
* .. External Subroutines ..
EXTERNAL MB03PD
* .. Intrinsic Functions ..
INTRINSIC MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, N, JOBRQ, RCOND, SVLMAX
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99972 ) N
ELSE
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99971 ) M
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,M )
* RQ with row pivoting.
DO 10 I = 1, M
JPVT(I) = 0
10 CONTINUE
CALL MB03PD( JOBRQ, M, N, A, LDA, JPVT, RCOND, SVLMAX, TAU,
$ RANK, SVAL, DWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99995 ) RANK
WRITE ( NOUT, FMT = 99994 ) ( JPVT(I), I = 1,M )
WRITE ( NOUT, FMT = 99993 ) ( SVAL(I), I = 1,3 )
END IF
END IF
END IF
*
STOP
*
99999 FORMAT (' MB03PD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB03PD = ',I2)
99995 FORMAT (' The rank is ',I5)
99994 FORMAT (' Row permutations are ',/(20(I3,2X)))
99993 FORMAT (' SVAL vector is ',/(20(1X,F10.4)))
99972 FORMAT (/' N is out of range.',/' N = ',I5)
99971 FORMAT (/' M is out of range.',/' M = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB03PD EXAMPLE PROGRAM DATA
6 5 R 5.D-16 0.0
1. 2. 6. 3. 5.
-2. -1. -1. 0. -2.
5. 5. 1. 5. 1.
-2. -1. -1. 0. -2.
4. 8. 4. 20. 4.
-2. -1. -1. 0. -2.
</PRE>
<B>Program Results</B>
<PRE>
MB03PD EXAMPLE PROGRAM RESULTS
The rank is 4
Row permutations are
2 4 6 3 1 5
SVAL vector is
24.5744 0.9580 0.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|