1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
<HTML>
<HEAD><TITLE>MB03RW - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03RW">MB03RW</A></H2>
<H3>
Solution of a Sylvester equation -AX + XB = C, with A and B in complex Schur form, aborting the computations when the norm of X is too large
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve the Sylvester equation -AX + XB = C, where A and B are
complex M-by-M and N-by-N matrices, respectively, in Schur form.
This routine is intended to be called only by SLICOT Library
routine MB03RZ. For efficiency purposes, the computations are
aborted when the absolute value of an element of X is greater than
a given value PMAX.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03RW( M, N, PMAX, A, LDA, B, LDB, C, LDC, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, M, N
DOUBLE PRECISION PMAX
C .. Array Arguments ..
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The order of the matrix A and the number of rows of the
matrices C and X. M >= 0.
N (input) INTEGER
The order of the matrix B and the number of columns of the
matrices C and X. N >= 0.
PMAX (input) DOUBLE PRECISION
An upper bound for the absolute value of the elements of X
(see METHOD).
A (input) COMPLEX*16 array, dimension (LDA,M)
The leading M-by-M upper triangular part of this array
must contain the matrix A of the Sylvester equation.
The elements below the diagonal are not referenced.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,M).
B (input) COMPLEX*16 array, dimension (LDB,N)
The leading N-by-N upper triangular part of this array
must contain the matrix B of the Sylvester equation.
The elements below the diagonal are not referenced.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) COMPLEX*16 array, dimension (LDC,N)
On entry, the leading M-by-N part of this array must
contain the matrix C of the Sylvester equation.
On exit, if INFO = 0, the leading M-by-N part of this
array contains the solution matrix X of the Sylvester
equation, and each element of X (see METHOD) has the
absolute value less than or equal to PMAX.
On exit, if INFO = 1, the solution matrix X has not been
computed completely, because an element of X had the
absolute value greater than PMAX. Part of the matrix C has
possibly been overwritten with the corresponding part
of X.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,M).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
= 1: an element of X had the absolute value greater than
the given value PMAX.
= 2: A and B have common or very close eigenvalues;
perturbed values were used to solve the equation
(but the matrices A and B are unchanged). This is a
warning.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine uses an adaptation of the standard method for solving
Sylvester equations [1], which controls the magnitude of the
individual elements of the computed solution [2]. The equation
-AX + XB = C can be rewritten as
m l-1
-A X + X B = C + sum A X - sum X B
kk kl kl ll kl i=k+1 ki il j=1 kj jl
for l = 1:n, and k = m:-1:1, where A , B , C , and X , are the
kk ll kl kl
elements defined by the partitioning induced by the Schur form
of A and B. So, the elements of X are found column by column,
starting from the bottom. If any such element has the absolute
value greater than the given value PMAX, the calculations are
ended.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Bartels, R.H. and Stewart, G.W. T
Solution of the matrix equation A X + XB = C.
Comm. A.C.M., 15, pp. 820-826, 1972.
[2] Bavely, C. and Stewart, G.W.
An Algorithm for Computing Reducing Subspaces by Block
Diagonalization.
SIAM J. Numer. Anal., 16, pp. 359-367, 1979.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 2 2
The algorithm requires 0(M N + MN ) operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
Let
( A C ) ( I X )
M = ( ), Y = ( ).
( 0 B ) ( 0 I )
Then
-1 ( A 0 )
Y M Y = ( ),
( 0 B )
hence Y is a non-unitary transformation matrix which performs the
reduction of M to a block-diagonal form. Bounding a norm of X is
equivalent to setting an upper bound to the condition number of
the transformation matrix Y.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|