1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
<HTML>
<HEAD><TITLE>MB03TD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03TD">MB03TD</A></H2>
<H3>
Reordering the diagonal blocks of a matrix in (skew-)Hamiltonian Schur form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To reorder a matrix X in skew-Hamiltonian Schur form:
[ A G ] T
X = [ T ], G = -G,
[ 0 A ]
or in Hamiltonian Schur form:
[ A G ] T
X = [ T ], G = G,
[ 0 -A ]
where A is in upper quasi-triangular form, so that a selected
cluster of eigenvalues appears in the leading diagonal blocks
of the matrix A (in X) and the leading columns of [ U1; -U2 ] form
an orthonormal basis for the corresponding right invariant
subspace.
If X is skew-Hamiltonian, then each eigenvalue appears twice; one
copy corresponds to the j-th diagonal element and the other to the
(n+j)-th diagonal element of X. The logical array LOWER controls
which copy is to be reordered to the leading part of A.
If X is Hamiltonian then the eigenvalues appear in pairs
(lambda,-lambda); lambda corresponds to the j-th diagonal
element and -lambda to the (n+j)-th diagonal element of X.
The logical array LOWER controls whether lambda or -lambda is to
be reordered to the leading part of A.
The matrix A must be in Schur canonical form (as returned by the
LAPACK routine DHSEQR), that is, block upper triangular with
1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has
its diagonal elements equal and its off-diagonal elements of
opposite sign.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03TD( TYP, COMPU, SELECT, LOWER, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, WR, WI, M, DWORK, LDWORK,
$ INFO )
C .. Scalar Arguments ..
CHARACTER COMPU, TYP
INTEGER INFO, LDA, LDG, LDU1, LDU2, LDWORK, M, N
C .. Array Arguments ..
LOGICAL LOWER(*), SELECT(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), G(LDG,*), U1(LDU1,*),
$ U2(LDU2,*), WI(*), WR(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TYP CHARACTER*1
Specifies the type of the input matrix X:
= 'S': X is skew-Hamiltonian;
= 'H': X is Hamiltonian.
COMPU CHARACTER*1
= 'U': update the matrices U1 and U2 containing the
Schur vectors;
= 'N': do not update U1 and U2.
SELECT (input/output) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set
to .TRUE.. To select a complex conjugate pair of
eigenvalues w(j) and w(j+1), corresponding to a 2-by-2
diagonal block, both SELECT(j) and SELECT(j+1) must be set
to .TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
LOWER (input/output) LOGICAL array, dimension (N)
LOWER controls which copy of a selected eigenvalue is
included in the cluster. If SELECT(j) is set to .TRUE.
for a real eigenvalue w(j); then LOWER(j) must be set to
.TRUE. if the eigenvalue corresponding to the (n+j)-th
diagonal element of X is to be reordered to the leading
part; and LOWER(j) must be set to .FALSE. if the
eigenvalue corresponding to the j-th diagonal element of
X is to be reordered to the leading part. Similarly, for
a complex conjugate pair of eigenvalues w(j) and w(j+1),
both LOWER(j) and LOWER(j+1) must be set to .TRUE. if the
eigenvalues corresponding to the (n+j:n+j+1,n+j:n+j+1)
diagonal block of X are to be reordered to the leading
part.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the upper quasi-triangular matrix A in Schur
canonical form.
On exit, the leading N-by-N part of this array contains
the reordered matrix A, again in Schur canonical form,
with the selected eigenvalues in the diagonal blocks.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,N).
G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
On entry, if TYP = 'S', the leading N-by-N part of this
array must contain the strictly upper triangular part of
the skew-symmetric matrix G. The rest of this array is not
referenced.
On entry, if TYP = 'H', the leading N-by-N part of this
array must contain the upper triangular part of the
symmetric matrix G. The rest of this array is not
referenced.
On exit, if TYP = 'S', the leading N-by-N part of this
array contains the strictly upper triangular part of the
skew-symmetric matrix G, updated by the orthogonal
symplectic transformation which reorders X.
On exit, if TYP = 'H', the leading N-by-N part of this
array contains the upper triangular part of the symmetric
matrix G, updated by the orthogonal symplectic
transformation which reorders X.
LDG INTEGER
The leading dimension of the array G. LDG >= MAX(1,N).
U1 (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
On entry, if COMPU = 'U', the leading N-by-N part of this
array must contain U1, the (1,1) block of an orthogonal
symplectic matrix U = [ U1, U2; -U2, U1 ].
On exit, if COMPU = 'U', the leading N-by-N part of this
array contains the (1,1) block of the matrix U,
postmultiplied by the orthogonal symplectic transformation
which reorders X. The leading M columns of U form an
orthonormal basis for the specified invariant subspace.
If COMPU = 'N', this array is not referenced.
LDU1 INTEGER
The leading dimension of the array U1.
LDU1 >= MAX(1,N), if COMPU = 'U';
LDU1 >= 1, otherwise.
U2 (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
On entry, if COMPU = 'U', the leading N-by-N part of this
array must contain U2, the (1,2) block of an orthogonal
symplectic matrix U = [ U1, U2; -U2, U1 ].
On exit, if COMPU = 'U', the leading N-by-N part of this
array contains the (1,2) block of the matrix U,
postmultiplied by the orthogonal symplectic transformation
which reorders X.
If COMPU = 'N', this array is not referenced.
LDU2 INTEGER
The leading dimension of the array U2.
LDU2 >= MAX(1,N), if COMPU = 'U';
LDU2 >= 1, otherwise.
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the
reordered eigenvalues of A. The eigenvalues are stored
in the same order as on the diagonal of A, with
WR(i) = A(i,i) and, if A(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) > 0 and WI(i+1) = -WI(i). Note that if an
eigenvalue is sufficiently ill-conditioned, then its value
may differ significantly from its value before reordering.
M (output) INTEGER
The dimension of the specified invariant subspace.
0 <= M <= N.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK.
On exit, if INFO = -18, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= MAX(1,N).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
= 1: reordering of X failed because some eigenvalue pairs
are too close to separate (the problem is very
ill-conditioned); X may have been partially
reordered, and WR and WI contain the eigenvalues in
the same order as in X.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Bai, Z. and Demmel, J.W.
On Swapping Diagonal Blocks in Real Schur Form.
Linear Algebra Appl., 186, pp. 73-95, 1993.
[2] Benner, P., Kressner, D., and Mehrmann, V.
Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory,
Algorithms and Applications. Techn. Report, TU Berlin, 2003.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB03TD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 100 )
INTEGER LDA, LDG, LDRES, LDU1, LDU2, LDWORK
PARAMETER ( LDA = NMAX, LDG = NMAX, LDRES = NMAX,
$ LDU1 = NMAX, LDU2 = NMAX, LDWORK = 8*NMAX )
* .. Local Scalars ..
CHARACTER*1 COMPU, TYP
INTEGER I, INFO, J, N, M
* .. Local Arrays ..
LOGICAL LOWER(NMAX), SELECT(NMAX)
DOUBLE PRECISION A(LDA, NMAX), DWORK(LDWORK), G(LDG, NMAX),
$ RES(LDRES,NMAX), U1(LDU1,NMAX), U2(LDU2,NMAX),
$ WR(NMAX), WI(NMAX)
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION MA02JD
EXTERNAL LSAME, MA02JD
* .. External Subroutines ..
EXTERNAL MB03TD
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, TYP, COMPU
IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) N
ELSE
READ ( NIN, FMT = * ) ( SELECT(J), J = 1,N )
READ ( NIN, FMT = * ) ( LOWER(J), J = 1,N )
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( G(I,J), J = 1,N ), I = 1,N )
IF ( LSAME( COMPU, 'U' ) ) THEN
READ ( NIN, FMT = * ) ( ( U1(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( U2(I,J), J = 1,N ), I = 1,N )
END IF
CALL MB03TD( TYP, COMPU, SELECT, LOWER, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, WR, WI, M, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( LSAME( COMPU, 'U' ) ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99994 )
$ ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N )
10 CONTINUE
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99994 )
$ ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99992 ) MA02JD( .FALSE., .FALSE., N,
$ U1, LDU1, U2, LDU2, RES, LDRES )
END IF
*
WRITE ( NOUT, FMT = 99996 )
DO 30 I = 1, N
WRITE ( NOUT, FMT = 99994 ) ( A(I,J), J = 1,N )
30 CONTINUE
*
WRITE ( NOUT, FMT = 99995 )
IF ( LSAME( TYP, 'S' ) ) THEN
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99994 )
$ ( -G(J,I), J = 1,I-1 ), ZERO, ( G(I,J), J = I+1,N )
40 CONTINUE
ELSE
DO 50 I = 1, N
WRITE ( NOUT, FMT = 99994 )
$ ( G(J,I), J = 1,I-1 ), ( G(I,J), J = I,N )
50 CONTINUE
END IF
END IF
END IF
*
99999 FORMAT (' MB03TD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB03TD = ',I2)
99997 FORMAT (' The orthogonal symplectic factor U is ')
99996 FORMAT (/' The matrix A in reordered Schur canonical form is ')
99995 FORMAT (/' The matrix G is ')
99994 FORMAT (20(1X,F9.4))
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' Orthogonality of U: || U''*U - I ||_F = ',G7.2)
END
</PRE>
<B>Program Data</B>
<PRE>
MB03TD EXAMPLE PROGRAM DATA
5 S U
.F. .T. .T. .F. .F.
.F. .T. .T. .F. .F.
0.9501 0.7621 0.6154 0.4057 0.0579
0 0.4565 0.7919 0.9355 0.3529
0 -0.6822 0.4565 0.9169 0.8132
0 0 0 0.4103 0.0099
0 0 0 0 0.1389
0 -0.1834 -0.1851 0.5659 0.3040
0 0 0.4011 -0.9122 0.2435
0 0 0 0.4786 -0.2432
0 0 0 0 -0.5272
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
</PRE>
<B>Program Results</B>
<PRE>
MB03TD EXAMPLE PROGRAM RESULTS
The orthogonal symplectic factor U is
0.0407 0.4847 0.8737 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1245 -0.3866 0.2087 0.4509 -0.1047 0.3229 0.1248 -0.0843 0.1967 0.6415
-0.0933 0.4089 -0.2225 -0.4085 0.0709 -0.2171 0.2156 -0.1095 0.4348 0.5551
-0.1059 -0.5250 0.2962 -0.0295 0.2207 -0.6789 0.1133 -0.0312 0.2979 -0.1112
0.3937 0.3071 -0.1887 0.5332 -0.4351 -0.4423 0.0600 -0.0127 0.1679 -0.1179
0.0000 0.0000 0.0000 0.0000 0.0000 0.0407 0.4847 0.8737 0.0000 0.0000
-0.3229 -0.1248 0.0843 -0.1967 -0.6415 0.1245 -0.3866 0.2087 0.4509 -0.1047
0.2171 -0.2156 0.1095 -0.4348 -0.5551 -0.0933 0.4089 -0.2225 -0.4085 0.0709
0.6789 -0.1133 0.0312 -0.2979 0.1112 -0.1059 -0.5250 0.2962 -0.0295 0.2207
0.4423 -0.0600 0.0127 -0.1679 0.1179 0.3937 0.3071 -0.1887 0.5332 -0.4351
Orthogonality of U: || U'*U - I ||_F = .21E-14
The matrix A in reordered Schur canonical form is
0.4565 -0.4554 0.2756 -0.8651 -1.2050
1.1863 0.4565 0.2186 -0.0233 0.8293
0.0000 0.0000 0.9501 0.0625 -0.0064
0.0000 0.0000 0.0000 0.4103 0.5597
0.0000 0.0000 0.0000 0.0000 0.1389
The matrix G is
0.0000 0.3298 -0.0292 -0.1571 0.1751
-0.3298 0.0000 -0.0633 -0.2951 0.2396
0.0292 0.0633 0.0000 0.9567 0.7485
0.1571 0.2951 -0.9567 0.0000 0.2960
-0.1751 -0.2396 -0.7485 -0.2960 0.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|