File: MB03VD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (372 lines) | stat: -rw-r--r-- 13,418 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
<HTML>
<HEAD><TITLE>MB03VD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03VD">MB03VD</A></H2>
<H3>
Periodic Hessenberg form of a product of p matrices using orthogonal similarity transformations
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To reduce a product of p real general matrices A = A_1*A_2*...*A_p
  to upper Hessenberg form, H = H_1*H_2*...*H_p, where H_1 is
  upper Hessenberg, and H_2, ..., H_p are upper triangular, by using
  orthogonal similarity transformations on A,

          Q_1' * A_1 * Q_2 = H_1,
          Q_2' * A_2 * Q_3 = H_2,
                 ...
          Q_p' * A_p * Q_1 = H_p.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03VD( N, P, ILO, IHI, A, LDA1, LDA2, TAU, LDTAU,
     $                   DWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           IHI, ILO, INFO, LDA1, LDA2, LDTAU, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A( LDA1, LDA2, * ), DWORK( * ), TAU( LDTAU, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the square matrices A_1, A_2, ..., A_p.
          N &gt;= 0.

  P       (input) INTEGER
          The number of matrices in the product A_1*A_2*...*A_p.
          P &gt;= 1.

  ILO     (input) INTEGER
  IHI     (input) INTEGER
          It is assumed that all matrices A_j, j = 2, ..., p, are
          already upper triangular in rows and columns 1:ILO-1 and
          IHI+1:N, and A_1 is upper Hessenberg in rows and columns
          1:ILO-1 and IHI+1:N, with A_1(ILO,ILO-1) = 0 (unless
          ILO = 1), and A_1(IHI+1,IHI) = 0 (unless IHI = N).
          If this is not the case, ILO and IHI should be set to 1
          and N, respectively.
          1 &lt;= ILO &lt;= max(1,N); min(ILO,N) &lt;= IHI &lt;= N.

  A       (input/output) DOUBLE PRECISION array, dimension
          (LDA1,LDA2,P)
          On entry, the leading N-by-N-by-P part of this array must
          contain the matrices of factors to be reduced;
          specifically, A(*,*,j) must contain A_j, j = 1, ..., p.
          On exit, the leading N-by-N upper triangle and the first
          subdiagonal of A(*,*,1) contain the upper Hessenberg
          matrix H_1, and the elements below the first subdiagonal,
          with the first column of the array TAU represent the
          orthogonal matrix Q_1 as a product of elementary
          reflectors. See FURTHER COMMENTS.
          For j &gt; 1, the leading N-by-N upper triangle of A(*,*,j)
          contains the upper triangular matrix H_j, and the elements
          below the diagonal, with the j-th column of the array TAU
          represent the orthogonal matrix Q_j as a product of
          elementary reflectors. See FURTHER COMMENTS.

  LDA1    INTEGER
          The first leading dimension of the array A.
          LDA1 &gt;= max(1,N).

  LDA2    INTEGER
          The second leading dimension of the array A.
          LDA2 &gt;= max(1,N).

  TAU     (output) DOUBLE PRECISION array, dimension (LDTAU,P)
          The leading N-1 elements in the j-th column contain the
          scalar factors of the elementary reflectors used to form
          the matrix Q_j, j = 1, ..., P. See FURTHER COMMENTS.

  LDTAU   INTEGER
          The leading dimension of the array TAU.
          LDTAU &gt;= max(1,N-1).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (N)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm consists in ihi-ilo major steps. In each such
  step i, ilo &lt;= i &lt;= ihi-1, the subdiagonal elements in the i-th
  column of A_j are annihilated using a Householder transformation
  from the left, which is also applied to A_(j-1) from the right,
  for j = p:-1:2. Then, the elements below the subdiagonal of the
  i-th column of A_1 are annihilated, and the Householder
  transformation is also applied to A_p from the right.
  See FURTHER COMMENTS.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Bojanczyk, A.W., Golub, G. and Van Dooren, P.
      The periodic Schur decomposition: algorithms and applications.
      Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
      1992.

  [2] Sreedhar, J. and Van Dooren, P.
      Periodic Schur form and some matrix equations.
      Proc. of the Symposium on the Mathematical Theory of Networks
      and Systems (MTNS'93), Regensburg, Germany (U. Helmke,
      R. Mennicken and J. Saurer, Eds.), Vol. 1, pp. 339-362, 1994.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically stable.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  Each matrix Q_j is represented as a product of (ihi-ilo)
  elementary reflectors,

     Q_j = H_j(ilo) H_j(ilo+1) . . . H_j(ihi-1).

  Each H_j(i), i = ilo, ..., ihi-1, has the form

     H_j(i) = I - tau_j * v_j * v_j',

  where tau_j is a real scalar, and v_j is a real vector with
  v_j(1:i) = 0, v_j(i+1) = 1 and v_j(ihi+1:n) = 0; v_j(i+2:ihi)
  is stored on exit in A_j(i+2:ihi,i), and tau_j in TAU(i,j).

  The contents of A_1 are illustrated by the following example
  for n = 7, ilo = 2, and ihi = 6:

  on entry                         on exit

  ( a   a   a   a   a   a   a )    ( a   h   h   h   h   h   a )
  ( 0   a   a   a   a   a   a )    ( 0   h   h   h   h   h   a )
  ( 0   a   a   a   a   a   a )    ( 0   h   h   h   h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  h   h   h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  v3  h   h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  v3  v4  h   h   h )
  ( 0   0   0   0   0   0   a )    ( 0   0   0   0   0   0   a )

  where a denotes an element of the original matrix A_1, h denotes
  a modified element of the upper Hessenberg matrix H_1, and vi
  denotes an element of the vector defining H_1(i).

  The contents of A_j, j &gt; 1, are illustrated by the following
  example for n = 7, ilo = 2, and ihi = 6:

  on entry                         on exit

  ( a   a   a   a   a   a   a )    ( a   h   h   h   h   h   a )
  ( 0   a   a   a   a   a   a )    ( 0   h   h   h   h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  h   h   h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  v3  h   h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  v3  v4  h   h   h )
  ( 0   a   a   a   a   a   a )    ( 0   v2  v3  v4  v5  h   h )
  ( 0   0   0   0   0   0   a )    ( 0   0   0   0   0   0   a )

  where a denotes an element of the original matrix A_j, h denotes
  a modified element of the upper triangular matrix H_j, and vi
  denotes an element of the vector defining H_j(i). (The element
  (1,2) in A_p is also unchanged for this example.)

  Note that for P = 1, the LAPACK Library routine DGEHRD could be
  more efficient on some computer architectures than this routine
  (a BLAS 2 version).

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB03VD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, PMAX
      PARAMETER        ( NMAX = 20, PMAX = 20 )
      INTEGER          LDA1, LDA2, LDQ1, LDQ2, LDTAU
      PARAMETER        ( LDA1 = NMAX, LDA2 = NMAX, LDQ1 = NMAX,
     $                   LDQ2 = NMAX, LDTAU = NMAX-1 )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = NMAX )
      DOUBLE PRECISION ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
*     .. Local Scalars ..
      DOUBLE PRECISION SSQ
      INTEGER          I, IHI, ILO, INFO, J, K, KP1, N, P
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA1,LDA2,PMAX), AS(LDA1,LDA2,PMAX),
     $                 DWORK(LDWORK), Q(LDQ1,LDQ2,PMAX),
     $                 QTA(LDQ1,NMAX), TAU(LDTAU,PMAX)
*     .. External Functions ..
      DOUBLE PRECISION DLANGE, DLAPY2
      EXTERNAL         DLANGE, DLAPY2
*     .. External Subroutines ..
      EXTERNAL         DGEMM, DLACPY, DLASET, MB03VD, MB03VY
*     .. Intrinsic Functions ..
      INTRINSIC        MIN
*     .. Executable Statements ..
      WRITE (NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, P, ILO, IHI
      IF ( N.LT.0 .OR. N.GT.MIN( LDA1, LDA2 ) ) THEN
         WRITE ( NOUT, FMT = 99991 ) N
      ELSE
         IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
            WRITE ( NOUT, FMT = 99990 ) P
         ELSE
*           Read matrices A_1, ..., A_p from the input file.
            DO 10 K = 1, P
               READ ( NIN, FMT = * )
     $            ( ( A(I,J,K), J = 1, N ), I = 1, N )
               CALL DLACPY( 'F', N, N, A(1,1,K), LDA1, AS(1,1,K), LDA1 )
   10       CONTINUE
*           Reduce to the periodic Hessenberg form.
            CALL MB03VD( N, P, ILO, IHI, A, LDA1, LDA2, TAU, LDTAU,
     $                   DWORK, INFO )
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99998 ) INFO
            ELSE
               WRITE ( NOUT, FMT = 99996 )
               DO 30 K = 1, P
                  CALL DLACPY( 'L', N, N, A(1,1,K), LDA1, Q(1,1,K),
     $                         LDQ1 )
                  IF ( N.GT.1 ) THEN
                     IF ( N.GT.2 .AND. K.EQ.1 ) THEN
                        CALL DLASET( 'L', N-2, N-2, ZERO, ZERO,
     $                               A(3,1,K), LDA1 )
                     ELSE IF ( K.GT.1 ) THEN
                        CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                               A(2,1,K), LDA1 )
                     END IF
                  END IF
                  WRITE ( NOUT, FMT = 99995 ) K
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99994 ) ( A(I,J,K), J = 1, N )
   20             CONTINUE
   30          CONTINUE
*              Accumulate the transformations.
               CALL MB03VY( N, P, ILO, IHI, Q, LDQ1, LDQ2, TAU, LDTAU,
     $                      DWORK, LDWORK, INFO )
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99997 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 50 K = 1, P
                     WRITE ( NOUT, FMT = 99995 ) K
                     DO 40 I = 1, N
                        WRITE ( NOUT, FMT = 99994 )
     $                        ( Q(I,J,K), J = 1, N )
   40                CONTINUE
   50             CONTINUE
*                 Compute error.
                  SSQ = ZERO
                  DO 60 K = 1, P
                     KP1 = K+1
                     IF( KP1.GT.P ) KP1 = 1
*                    Compute NORM (Z' * A * Z - Aout)
                     CALL DGEMM( 'T', 'N', N, N, N, ONE, Q(1,1,K), LDQ1,
     $                           AS(1,1,K), LDA1, ZERO, QTA, LDQ1 )
                     CALL DGEMM( 'N', 'N', N, N, N, ONE, QTA, LDQ1,
     $                           Q(1,1,KP1), LDQ1, -ONE, A(1,1,K),
     $                           LDA1 )
                     SSQ = DLAPY2( SSQ,
     $                             DLANGE( 'Frobenius', N, N, A(1,1,K),
     $                                     LDA1, DWORK ) )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99992 ) SSQ
               END IF
            END IF
         END IF
      END IF
      STOP
99999 FORMAT (' MB03VD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from MB03VD = ', I2)
99997 FORMAT (' INFO on exit from MB03VY = ', I2)
99996 FORMAT (' Reduced matrices')
99995 FORMAT (/' K = ', I5)
99994 FORMAT (8F8.4)
99993 FORMAT (/' Transformation matrices')
99992 FORMAT (/,' NORM (Q''*A*Q - Aout) = ', 1PD12.5)
99991 FORMAT (/, ' N is out of range.',/' N = ', I5)
99990 FORMAT (/, ' P is out of range.',/' P = ', I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
MB03VD EXAMPLE PROGRAM DATA
4 2 1 4
1.5 -.7 3.5 -.7 
1.  0.  2.  3. 
1.5 -.7 2.5 -.3 
1.  0.  2.  1. 
1.5 -.7 3.5 -.7 
1.  0.  2.  3. 
1.5 -.7 2.5 -.3 
1.  0.  2.  1. 
</PRE>
<B>Program Results</B>
<PRE>
 MB03VD EXAMPLE PROGRAM RESULTS

 Reduced matrices

 K =     1
 -2.3926  2.7042 -0.9598 -1.2335
  4.1417 -1.7046  1.3001 -1.3120
  0.0000 -1.6247 -0.2534  1.6453
  0.0000  0.0000 -0.0169 -0.4451

 K =     2
 -2.5495  2.3402  4.7021  0.2329
  0.0000  1.9725 -0.2483 -2.3493
  0.0000  0.0000 -0.6290 -0.5975
  0.0000  0.0000  0.0000 -0.4426

 Transformation matrices

 K =     1
  1.0000  0.0000  0.0000  0.0000
  0.0000 -0.7103  0.5504 -0.4388
  0.0000 -0.4735 -0.8349 -0.2807
  0.0000 -0.5209  0.0084  0.8536

 K =     2
 -0.5883  0.2947  0.7528 -0.0145
 -0.3922 -0.8070  0.0009 -0.4415
 -0.5883  0.4292 -0.6329 -0.2630
 -0.3922 -0.2788 -0.1809  0.8577

 NORM (Q'*A*Q - Aout) =  2.93760D-15
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>