1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
<HTML>
<HEAD><TITLE>MB03WA - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03WA">MB03WA</A></H2>
<H3>
Swapping two adjacent diagonal blocks in a periodic real Schur canonical form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To swap adjacent diagonal blocks A11*B11 and A22*B22 of size
1-by-1 or 2-by-2 in an upper (quasi) triangular matrix product
A*B by an orthogonal equivalence transformation.
(A, B) must be in periodic real Schur canonical form (as returned
by SLICOT Library routine MB03XP), i.e., A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks, and B is upper
triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)',
Z(in) * B(in) * Q(in)' = Z(out) * B(out) * Q(out)'.
This routine is largely based on the LAPACK routine DTGEX2
developed by Bo Kagstrom and Peter Poromaa.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03WA( WANTQ, WANTZ, N1, N2, A, LDA, B, LDB, Q, LDQ,
$ Z, LDZ, INFO )
C .. Scalar Arguments ..
LOGICAL WANTQ, WANTZ
INTEGER INFO, LDA, LDB, LDQ, LDZ, N1, N2
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
WANTQ LOGICAL
Indicates whether or not the user wishes to accumulate
the matrix Q as follows:
= .TRUE. : The matrix Q is updated;
= .FALSE.: the matrix Q is not required.
WANTZ LOGICAL
Indicates whether or not the user wishes to accumulate
the matrix Z as follows:
= .TRUE. : The matrix Z is updated;
= .FALSE.: the matrix Z is not required.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N1 (input) INTEGER
The order of the first block A11*B11. N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block A22*B22. N2 = 0, 1 or 2.
A (input/output) DOUBLE PRECISION array, dimension
(LDA,N1+N2)
On entry, the leading (N1+N2)-by-(N1+N2) part of this
array must contain the matrix A.
On exit, the leading (N1+N2)-by-(N1+N2) part of this array
contains the matrix A of the reordered pair.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,N1+N2).
B (input/output) DOUBLE PRECISION array, dimension
(LDB,N1+N2)
On entry, the leading (N1+N2)-by-(N1+N2) part of this
array must contain the matrix B.
On exit, the leading (N1+N2)-by-(N1+N2) part of this array
contains the matrix B of the reordered pair.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1,N1+N2).
Q (input/output) DOUBLE PRECISION array, dimension
(LDQ,N1+N2)
On entry, if WANTQ = .TRUE., the leading
(N1+N2)-by-(N1+N2) part of this array must contain the
orthogonal matrix Q.
On exit, the leading (N1+N2)-by-(N1+N2) part of this array
contains the updated matrix Q. Q will be a rotation
matrix for N1=N2=1.
This array is not referenced if WANTQ = .FALSE..
LDQ INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N1+N2.
Z (input/output) DOUBLE PRECISION array, dimension
(LDZ,N1+N2)
On entry, if WANTZ = .TRUE., the leading
(N1+N2)-by-(N1+N2) part of this array must contain the
orthogonal matrix Z.
On exit, the leading (N1+N2)-by-(N1+N2) part of this array
contains the updated matrix Z. Z will be a rotation
matrix for N1=N2=1.
This array is not referenced if WANTZ = .FALSE..
LDZ INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N1+N2.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
= 1: the transformed matrix (A, B) would be
too far from periodic Schur form; the blocks are
not swapped and (A,B) and (Q,Z) are unchanged.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
In the current code both weak and strong stability tests are
performed. The user can omit the strong stability test by changing
the internal logical parameter WANDS to .FALSE.. See ref. [2] for
details.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kagstrom, B.
A direct method for reordering eigenvalues in the generalized
real Schur form of a regular matrix pair (A,B), in M.S. Moonen
et al (eds.), Linear Algebra for Large Scale and Real-Time
Applications, Kluwer Academic Publ., 1993, pp. 195-218.
[2] Kagstrom, B., and Poromaa, P.
Computing eigenspaces with specified eigenvalues of a regular
matrix pair (A, B) and condition estimation: Theory,
algorithms and software, Numer. Algorithms, 1996, vol. 12,
pp. 369-407.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|