1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
<HTML>
<HEAD><TITLE>MB03WX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03WX">MB03WX</A></H2>
<H3>
Eigenvalues of a product of matrices in periodic Schur form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the eigenvalues of a product of matrices,
T = T_1*T_2*...*T_p, where T_1 is an upper quasi-triangular
matrix and T_2, ..., T_p are upper triangular matrices.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03WX( N, P, T, LDT1, LDT2, WR, WI, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDT1, LDT2, N, P
C .. Array Arguments ..
DOUBLE PRECISION T( LDT1, LDT2, * ), WI( * ), WR( * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix T. N >= 0.
P (input) INTEGER
The number of matrices in the product T_1*T_2*...*T_p.
P >= 1.
T (input) DOUBLE PRECISION array, dimension (LDT1,LDT2,P)
The leading N-by-N part of T(*,*,1) must contain the upper
quasi-triangular matrix T_1 and the leading N-by-N part of
T(*,*,j) for j > 1 must contain the upper-triangular
matrix T_j, j = 2, ..., p.
The elements below the subdiagonal of T(*,*,1) and below
the diagonal of T(*,*,j), j = 2, ..., p, are not
referenced.
LDT1 INTEGER
The first leading dimension of the array T.
LDT1 >= max(1,N).
LDT2 INTEGER
The second leading dimension of the array T.
LDT2 >= max(1,N).
WR, WI (output) DOUBLE PRECISION arrays, dimension (N)
The real and imaginary parts, respectively, of the
eigenvalues of T. The eigenvalues are stored in the same
order as on the diagonal of T_1. If T(i:i+1,i:i+1,1) is a
2-by-2 diagonal block with complex conjugated eigenvalues
then WI(i) > 0 and WI(i+1) = -WI(i).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|