File: MB03WX.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (103 lines) | stat: -rw-r--r-- 2,900 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
<HTML>
<HEAD><TITLE>MB03WX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03WX">MB03WX</A></H2>
<H3>
Eigenvalues of a product of matrices in periodic Schur form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the eigenvalues of a product of matrices,
  T = T_1*T_2*...*T_p, where T_1 is an upper quasi-triangular
  matrix and T_2, ..., T_p are upper triangular matrices.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03WX( N, P, T, LDT1, LDT2, WR, WI, INFO )
C     .. Scalar Arguments ..
      INTEGER          INFO, LDT1, LDT2, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION T( LDT1, LDT2, * ), WI( * ), WR( * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix T.  N &gt;= 0.

  P       (input) INTEGER
          The number of matrices in the product T_1*T_2*...*T_p.
          P &gt;= 1.

  T       (input) DOUBLE PRECISION array, dimension (LDT1,LDT2,P)
          The leading N-by-N part of T(*,*,1) must contain the upper
          quasi-triangular matrix T_1 and the leading N-by-N part of
          T(*,*,j) for j &gt; 1 must contain the upper-triangular
          matrix T_j, j = 2, ..., p.
          The elements below the subdiagonal of T(*,*,1) and below
          the diagonal of T(*,*,j), j = 2, ..., p, are not
          referenced.

  LDT1    INTEGER
          The first leading dimension of the array T.
          LDT1 &gt;= max(1,N).

  LDT2    INTEGER
          The second leading dimension of the array T.
          LDT2 &gt;= max(1,N).

  WR, WI  (output) DOUBLE PRECISION arrays, dimension (N)
          The real and imaginary parts, respectively, of the
          eigenvalues of T. The eigenvalues are stored in the same
          order as on the diagonal of T_1. If T(i:i+1,i:i+1,1) is a
          2-by-2 diagonal block with complex conjugated eigenvalues
          then WI(i) &gt; 0 and WI(i+1) = -WI(i).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>