1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
<HTML>
<HEAD><TITLE>MB03XD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03XD">MB03XD</A></H2>
<H3>
Computing the eigenvalues of a Hamiltonian matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the eigenvalues of a Hamiltonian matrix,
[ A G ] T T
H = [ T ], G = G, Q = Q, (1)
[ Q -A ]
where A, G and Q are real n-by-n matrices.
Due to the structure of H all eigenvalues appear in pairs
(lambda,-lambda). This routine computes the eigenvalues of H
using an algorithm based on the symplectic URV and the periodic
Schur decompositions as described in [1],
T [ T G ]
U H V = [ T ], (2)
[ 0 S ]
where U and V are 2n-by-2n orthogonal symplectic matrices,
S is in real Schur form and T is upper triangular.
The algorithm is backward stable and preserves the eigenvalue
pairings in finite precision arithmetic.
Optionally, a symplectic balancing transformation to improve the
conditioning of eigenvalues is computed (see MB04DD). In this
case, the matrix H in decomposition (2) must be replaced by the
balanced matrix.
The SLICOT Library routine MB03ZD can be used to compute invariant
subspaces of H from the output of this routine.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03XD( BALANC, JOB, JOBU, JOBV, N, A, LDA, QG, LDQG,
$ T, LDT, U1, LDU1, U2, LDU2, V1, LDV1, V2, LDV2,
$ WR, WI, ILO, SCALE, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER BALANC, JOB, JOBU, JOBV
INTEGER ILO, INFO, LDA, LDQG, LDT, LDU1, LDU2, LDV1,
$ LDV2, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), QG(LDQG,*), SCALE(*),
$ T(LDT,*), U1(LDU1,*), U2(LDU2,*), V1(LDV1,*),
$ V2(LDV2,*), WI(*), WR(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
BALANC CHARACTER*1
Indicates how H should be diagonally scaled and/or
permuted to reduce its norm.
= 'N': Do not diagonally scale or permute;
= 'P': Perform symplectic permutations to make the matrix
closer to Hamiltonian Schur form. Do not diagonally
scale;
= 'S': Diagonally scale the matrix, i.e., replace A, G and
Q by D*A*D**(-1), D*G*D and D**(-1)*Q*D**(-1) where
D is a diagonal matrix chosen to make the rows and
columns of H more equal in norm. Do not permute;
= 'B': Both diagonally scale and permute A, G and Q.
Permuting does not change the norm of H, but scaling does.
JOB CHARACTER*1
Indicates whether the user wishes to compute the full
decomposition (2) or the eigenvalues only, as follows:
= 'E': compute the eigenvalues only;
= 'S': compute matrices T and S of (2);
= 'G': compute matrices T, S and G of (2).
JOBU CHARACTER*1
Indicates whether or not the user wishes to compute the
orthogonal symplectic matrix U of (2) as follows:
= 'N': the matrix U is not computed;
= 'U': the matrix U is computed.
JOBV CHARACTER*1
Indicates whether or not the user wishes to compute the
orthogonal symplectic matrix V of (2) as follows:
= 'N': the matrix V is not computed;
= 'V': the matrix V is computed.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the matrix A.
On exit, this array is overwritten. If JOB = 'S' or
JOB = 'G', the leading N-by-N part of this array contains
the matrix S in real Schur form of decomposition (2).
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
QG (input/output) DOUBLE PRECISION array, dimension
(LDQG,N+1)
On entry, the leading N-by-N+1 part of this array must
contain in columns 1:N the lower triangular part of the
matrix Q and in columns 2:N+1 the upper triangular part
of the matrix G.
On exit, this array is overwritten. If JOB = 'G', the
leading N-by-N+1 part of this array contains in columns
2:N+1 the matrix G of decomposition (2).
LDQG INTEGER
The leading dimension of the array QG. LDQG >= max(1,N).
T (output) DOUBLE PRECISION array, dimension (LDT,N)
On exit, if JOB = 'S' or JOB = 'G', the leading N-by-N
part of this array contains the upper triangular matrix T
of the decomposition (2). Otherwise, this array is used as
workspace.
LDT INTEGER
The leading dimension of the array T. LDT >= MAX(1,N).
U1 (output) DOUBLE PRECISION array, dimension (LDU1,N)
On exit, if JOBU = 'U', the leading N-by-N part of this
array contains the (1,1) block of the orthogonal
symplectic matrix U of decomposition (2).
LDU1 INTEGER
The leading dimension of the array U1. LDU1 >= 1.
LDU1 >= N, if JOBU = 'U'.
U2 (output) DOUBLE PRECISION array, dimension (LDU2,N)
On exit, if JOBU = 'U', the leading N-by-N part of this
array contains the (2,1) block of the orthogonal
symplectic matrix U of decomposition (2).
LDU2 INTEGER
The leading dimension of the array U2. LDU2 >= 1.
LDU2 >= N, if JOBU = 'U'.
V1 (output) DOUBLE PRECISION array, dimension (LDV1,N)
On exit, if JOBV = 'V', the leading N-by-N part of this
array contains the (1,1) block of the orthogonal
symplectic matrix V of decomposition (2).
LDV1 INTEGER
The leading dimension of the array V1. LDV1 >= 1.
LDV1 >= N, if JOBV = 'V'.
V2 (output) DOUBLE PRECISION array, dimension (LDV2,N)
On exit, if JOBV = 'V', the leading N-by-N part of this
array contains the (2,1) block of the orthogonal
symplectic matrix V of decomposition (2).
LDV2 INTEGER
The leading dimension of the array V2. LDV2 >= 1.
LDV2 >= N, if JOBV = 'V'.
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
On exit, the leading N elements of WR and WI contain the
real and imaginary parts, respectively, of N eigenvalues
that have nonnegative imaginary part. Their complex
conjugate eigenvalues are not stored. If imaginary parts
are zero (i.e., for real eigenvalues), only positive
eigenvalues are stored.
ILO (output) INTEGER
ILO is an integer value determined when H was balanced.
The balanced A(i,j) = 0 if I > J and J = 1,...,ILO-1.
The balanced Q(i,j) = 0 if J = 1,...,ILO-1 or
I = 1,...,ILO-1.
SCALE (output) DOUBLE PRECISION array, dimension (N)
On exit, if BALANC <> 'N', the leading N elements of this
array contain details of the permutation and/or scaling
factors applied when balancing H, see MB04DD.
This array is not referenced if BALANC = 'N'.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK, and DWORK(2) returns the 1-norm of the
scaled (if BALANC = 'S' or 'B') Hamiltonian matrix.
On exit, if INFO = -25, DWORK(1) returns the minimum
value of LDWORK.
LDWORK (input) INTEGER
The dimension of the array DWORK. LDWORK >= max( 2, 8*N ).
Moreover:
If JOB = 'E' or 'S' and JOBU = 'N' and JOBV = 'N',
LDWORK >= 7*N+N*N.
If JOB = 'G' and JOBU = 'N' and JOBV = 'N',
LDWORK >= max( 7*N+N*N, 2*N+3*N*N ).
If JOB = 'G' and JOBU = 'U' and JOBV = 'N',
LDWORK >= 7*N+2*N*N.
If JOB = 'G' and JOBU = 'N' and JOBV = 'V',
LDWORK >= 7*N+2*N*N.
If JOB = 'G' and JOBU = 'U' and JOBV = 'V',
LDWORK >= 7*N+N*N.
For good performance, LDWORK must generally be larger.
If LDWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the
DWORK array, returns this value as the first entry of
the DWORK array, and no error message related to LDWORK
is issued by XERBLA.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO (output) INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
> 0: if INFO = i, the periodic QR algorithm failed to
compute all the eigenvalues, elements i+1:N of WR
and WI contain eigenvalues which have converged.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Mehrmann, V., and Xu, H.
A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic
pencils.
Numer. Math., Vol. 78(3), pp. 329-358, 1998.
[2] Benner, P., Mehrmann, V., and Xu, H.
A new method for computing the stable invariant subspace of a
real Hamiltonian matrix, J. Comput. Appl. Math., vol. 86,
pp. 17-43, 1997.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB03XD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 100 )
INTEGER LDA, LDQG, LDRES, LDT, LDU1, LDU2, LDV1, LDV2,
$ LDWORK
PARAMETER ( LDA = NMAX, LDQG = NMAX, LDRES = NMAX,
$ LDT = NMAX, LDU1 = NMAX, LDU2 = NMAX,
$ LDV1 = NMAX, LDV2 = NMAX,
$ LDWORK = 3*NMAX*NMAX + 7*NMAX )
* .. Local Scalars ..
CHARACTER*1 BALANC, JOB, JOBU, JOBV
INTEGER I, ILO, INFO, J, N
DOUBLE PRECISION TEMP
* .. Local Arrays ..
DOUBLE PRECISION A(LDA, NMAX), DWORK(LDWORK), QG(LDQG, NMAX+1),
$ RES(LDRES,3*NMAX+1), SCALE(NMAX), T(LDT,NMAX),
$ U1(LDU1,NMAX), U2(LDU2, NMAX), V1(LDV1,NMAX),
$ V2(LDV2, NMAX), WI(NMAX), WR(NMAX)
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE, DLAPY2, MA02JD
EXTERNAL DLANGE, DLAPY2, LSAME, MA02JD
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, MB03XD, MB04DD
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, BALANC, JOB, JOBU, JOBV
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, A, LDA, RES(1,N+1), LDRES )
READ ( NIN, FMT = * ) ( ( QG(I,J), J = 1,N+1 ), I = 1,N )
CALL DLACPY( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES )
INFO = 0
CALL MB03XD( BALANC, JOB, JOBU, JOBV, N, A, LDA, QG, LDQG,
$ T, LDT, U1, LDU1, U2, LDU2, V1, LDV1, V2, LDV2,
$ WR, WI, ILO, SCALE, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) I, WR(I), WI(I)
20 CONTINUE
IF ( LSAME( JOB, 'S' ).OR.LSAME( JOB, 'G' ) ) THEN
WRITE ( NOUT, FMT = 99995 )
DO 30 I = 1, N
WRITE ( NOUT, FMT = 99990 ) ( A(I,J), J = 1,N )
30 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99990 ) ( T(I,J), J = 1,N )
40 CONTINUE
END IF
IF ( LSAME( JOB, 'G' ) ) THEN
WRITE ( NOUT, FMT = 99993 )
DO 50 I = 1, N
WRITE ( NOUT, FMT = 99990 ) ( QG(I,J+1), J = 1,N )
50 CONTINUE
END IF
C
IF ( LSAME( JOB, 'G' ).AND.LSAME( JOBU, 'U' ).AND.
$ LSAME( JOBV, 'V' ) ) THEN
CALL MB04DD( BALANC, N, RES(1,N+1), LDRES, RES(1,2*N+1),
$ LDRES, I, DWORK, INFO )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ RES(1,N+1), LDRES, V1, LDV1, ZERO, RES,
$ LDRES )
CALL DSYMM ( 'Left', 'Upper', N, N, -ONE, RES(1,2*N+2),
$ LDRES, V2, LDV2, ONE, RES, LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N,
$ -ONE, U1, LDU1, T, LDT, ONE, RES, LDRES )
TEMP = DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ RES(1,N+1), LDRES, V2, LDV2, ZERO, RES,
$ LDRES )
CALL DSYMM( 'Left', 'Upper', N, N, ONE, RES(1,2*N+2),
$ LDRES, V1, LDV1, ONE, RES, LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N,
$ -ONE, U1, LDU1, QG(1,2), LDQG, ONE, RES,
$ LDRES )
CALL DGEMM( 'No Transpose', 'Transpose', N, N, N,
$ -ONE, U2, LDU2, A, LDA, ONE, RES, LDRES )
TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK ) )
CALL DSYMM( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1),
$ LDRES, V1, LDV1, ZERO, RES, LDRES )
CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, ONE,
$ RES(1,N+1), LDRES, V2, LDV2, ONE, RES,
$ LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ U2, LDU2, T, LDT, ONE, RES, LDRES )
TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK ) )
CALL DSYMM( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1),
$ LDRES, V2, LDV2, ZERO, RES, LDRES )
CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, -ONE,
$ RES(1,N+1), LDRES, V1, LDV1, ONE, RES,
$ LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ U2, LDU2, QG(1,2), LDQG, ONE, RES, LDRES )
CALL DGEMM( 'No Transpose', 'Transpose', N, N, N,
$ -ONE, U1, LDU1, A, LDA, ONE, RES, LDRES )
TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK ) )
WRITE ( NOUT, FMT = 99987 ) TEMP
END IF
C
IF ( LSAME( JOBU, 'U' ) ) THEN
WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, N
WRITE ( NOUT, FMT = 99990 )
$ ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N )
60 CONTINUE
DO 70 I = 1, N
WRITE ( NOUT, FMT = 99990 )
$ ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N )
70 CONTINUE
WRITE ( NOUT, FMT = 99986 ) MA02JD( .FALSE., .FALSE., N,
$ U1, LDU1, U2, LDU2, RES, LDRES )
END IF
IF ( LSAME( JOBV, 'V' ) ) THEN
WRITE ( NOUT, FMT = 99991 )
DO 80 I = 1, N
WRITE ( NOUT, FMT = 99990 )
$ ( V1(I,J), J = 1,N ), ( V2(I,J), J = 1,N )
80 CONTINUE
DO 90 I = 1, N
WRITE ( NOUT, FMT = 99990 )
$ ( -V2(I,J), J = 1,N ), ( V1(I,J), J = 1,N )
90 CONTINUE
WRITE ( NOUT, FMT = 99985 ) MA02JD( .FALSE., .FALSE., N,
$ V1, LDV1, V2, LDV2, RES, LDRES )
END IF
IF ( LSAME( BALANC, 'S' ).OR.LSAME( BALANC, 'B' ) ) THEN
WRITE ( NOUT, FMT = 99989 )
DO 100 I = 1, N
WRITE ( NOUT, FMT = 99996 ) I, SCALE(I)
100 CONTINUE
END IF
END IF
END IF
*
99999 FORMAT (' MB03XD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB03XD = ',I2)
99997 FORMAT (' The eigenvalues are',//' i',6X,
$ 'WR(i)',6X,'WI(i)',/)
99996 FORMAT (I4,3X,F8.4,3X,F8.4)
99995 FORMAT (/' The matrix S of the reduced matrix is')
99994 FORMAT (/' The matrix T of the reduced matrix is')
99993 FORMAT (/' The matrix G of the reduced matrix is')
99992 FORMAT (/' The orthogonal symplectic factor U is')
99991 FORMAT (/' The orthogonal symplectic factor V is')
99990 FORMAT (20(1X,F19.16))
99989 FORMAT (/' The diagonal scaling factors are ',//' i',6X,
$ 'SCALE(i)',/)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' Residual: || H*V - U*R ||_F = ',G7.2)
99986 FORMAT (/' Orthogonality of U: || U^T U - I ||_F = ',G7.2)
99985 FORMAT (/' Orthogonality of V: || V^T V - I ||_F = ',G7.2)
END
</PRE>
<B>Program Data</B>
<PRE>
MB03XD EXAMPLE PROGRAM DATA
5 N G U V
3.7588548168313685e-001 9.1995720669587144e-001 1.9389317998466821e-001 5.4878212553858818e-001 6.2731478808399666e-001
9.8764628987858052e-003 8.4472150190817474e-001 9.0481233416635698e-001 9.3158335257969060e-001 6.9908013774533750e-001
4.1985780631021896e-001 3.6775288246828447e-001 5.6920574967174709e-001 3.3519743020639464e-001 3.9718395379261456e-001
7.5366962581358721e-001 6.2080133182114383e-001 6.3178992922175603e-001 6.5553105501201447e-001 4.1362889533818031e-001
7.9387177473231862e-001 7.3127726446634478e-001 2.3441295540825388e-001 3.9190420688900335e-001 6.5521294635567051e-001
1.8015558545989005e-001 4.1879254941592853e-001 2.7203760737317784e-001 2.8147214090719214e-001 1.7731904815580199e-001 3.4718672159409536e-001
2.7989257702981651e-001 3.5042861661866559e-001 2.5565572408444881e-001 4.3977750345993827e-001 2.8855026075967616e-001 2.1496327083014577e-001
1.7341073886969158e-001 3.9913855375815932e-001 4.0151317011596516e-001 4.0331887464437133e-001 2.6723538667317948e-001 3.7110275606849241e-001
3.7832182695699140e-001 3.3812641389556752e-001 8.4360396433341395e-002 4.3672540277019672e-001 7.0022228267365608e-002 3.8210230186291916e-001
1.9548216143135175e-001 2.9055490787446736e-001 4.7670819669167425e-001 1.4636498713707141e-001 2.7670398401519275e-001 2.9431082727794898e-002
</PRE>
<B>Program Results</B>
<PRE>
MB03XD EXAMPLE PROGRAM RESULTS
The eigenvalues are
i WR(i) WI(i)
1 3.1941 0.0000
2 0.1350 0.3179
3 -0.1350 0.3179
4 0.0595 0.2793
5 -0.0595 0.2793
The matrix S of the reduced matrix is
-3.1844761777714723 0.1612357243439330 -0.0628592203751083 0.2449004200921966 0.1974400149992633
0.0000000000000000 -0.1510667773167795 0.4260444411622876 -0.1775026035208666 0.3447278421198404
0.0000000000000000 -0.1386140422054281 -0.3006779624777419 0.2944143257134117 0.3456440339120381
0.0000000000000000 0.0000000000000000 0.0000000000000000 -0.2710128384740589 0.0933189808067083
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.4844146572359630 0.2004347508746724
The matrix T of the reduced matrix is
3.2038208121776366 0.1805955192510636 0.2466389119377562 -0.2539149302433404 -0.0359238844381174
0.0000000000000000 -0.7196686433290822 0.0000000000000000 0.2428659121580382 -0.0594190100670709
0.0000000000000000 0.0000000000000000 -0.1891741194498124 -0.3309578443491325 -0.0303520731950498
0.0000000000000000 0.0000000000000000 0.0000000000000000 -0.4361574461961496 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.1530894573304220
The matrix G of the reduced matrix is
-0.0370982242678458 0.0917788436945730 -0.0560402416315236 0.1345152517579191 0.0256668227276665
0.0652183678916926 -0.0700457231988328 0.0350041175858816 -0.2233868768749277 -0.1171980260782820
-0.0626428681377074 0.2327575351902838 -0.1251515732208133 -0.0177816046663209 0.3696921118421109
0.0746042309265569 -0.0828007611045243 0.0217427473546003 -0.1157775118548850 -0.3161183681200607
0.1374372236164838 0.1002727885506978 0.4021556774753987 -0.0431072263235625 0.1067394572547804
Residual: || H*V - U*R ||_F = .38E-14
The orthogonal symplectic factor U is
0.3806883009357249 -0.0347810363019666 -0.5014665065895627 0.5389691288472425 0.2685446895251499 -0.1795922007470744 0.1908329820840935 0.0868799433942041 0.3114741142062469 -0.2579907627915116
0.4642712665555327 -0.5942766860716397 0.4781179763952658 0.2334370556238072 0.0166790369048881 -0.2447897730222852 -0.1028403314750053 -0.1157840914576285 -0.1873268885694422 0.1700708002861556
0.2772789197782788 -0.0130145392695854 -0.2123817030594153 -0.2550292626960007 -0.5049268366774478 -0.2243335325285329 0.3180998613802498 0.3315380214794935 0.1977859924739816 0.5072476567310036
0.4209268575081797 0.1499593172661210 -0.1925590746592206 -0.5472292877802408 0.4543329704184014 -0.2128397588651423 -0.2740560593051884 0.1941418870268831 -0.3096684962457407 -0.0581576193198820
0.3969669479129447 0.6321903535930841 0.3329156356041941 0.0163533225344391 -0.2638879466190056 -0.2002027567371933 -0.0040094115506845 -0.3979373387545256 0.1520881534833996 -0.2010804514091296
0.1795922007470744 -0.1908329820840935 -0.0868799433942041 -0.3114741142062469 0.2579907627915116 0.3806883009357249 -0.0347810363019666 -0.5014665065895627 0.5389691288472425 0.2685446895251499
0.2447897730222852 0.1028403314750053 0.1157840914576285 0.1873268885694422 -0.1700708002861556 0.4642712665555327 -0.5942766860716397 0.4781179763952658 0.2334370556238072 0.0166790369048881
0.2243335325285329 -0.3180998613802498 -0.3315380214794935 -0.1977859924739816 -0.5072476567310036 0.2772789197782788 -0.0130145392695854 -0.2123817030594153 -0.2550292626960007 -0.5049268366774478
0.2128397588651423 0.2740560593051884 -0.1941418870268831 0.3096684962457407 0.0581576193198820 0.4209268575081797 0.1499593172661210 -0.1925590746592206 -0.5472292877802408 0.4543329704184014
0.2002027567371933 0.0040094115506845 0.3979373387545256 -0.1520881534833996 0.2010804514091296 0.3969669479129447 0.6321903535930841 0.3329156356041941 0.0163533225344391 -0.2638879466190056
Orthogonality of U: || U^T U - I ||_F = .28E-14
The orthogonal symplectic factor V is
0.4447147692018332 -0.6830166755147445 -0.0002576861753461 0.5781954611783305 -0.0375091627893695 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5121756358795815 0.0297197140254867 0.4332229148788674 -0.3240527006890555 0.5330850295256576 0.0299719306696789 -0.2322624725320732 -0.0280846899680330 -0.3044255686880015 -0.1077641482535463
0.3664711365265602 0.3288511296455134 0.0588396016404466 0.1134221597062252 0.1047567336850027 -0.0069083614679702 0.3351358347080169 -0.4922707032978909 0.4293545450291777 0.4372821269061838
0.4535357098437908 0.1062866148880810 -0.3964092656837799 -0.2211800890450648 0.0350667323996154 0.0167847133528844 0.2843629278945263 0.5958979805231206 0.3097336757510830 -0.2086733033047175
0.4450432900616098 0.2950206358263727 -0.1617837757183794 -0.0376369332204945 -0.6746752660482708 0.0248567764822071 -0.2810759958040465 -0.1653113624869875 -0.3528780198620394 -0.0254898556119200
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.4447147692018332 -0.6830166755147445 -0.0002576861753461 0.5781954611783305 -0.0375091627893695
-0.0299719306696789 0.2322624725320732 0.0280846899680330 0.3044255686880015 0.1077641482535463 0.5121756358795815 0.0297197140254867 0.4332229148788674 -0.3240527006890555 0.5330850295256576
0.0069083614679702 -0.3351358347080169 0.4922707032978909 -0.4293545450291777 -0.4372821269061838 0.3664711365265602 0.3288511296455134 0.0588396016404466 0.1134221597062252 0.1047567336850027
-0.0167847133528844 -0.2843629278945263 -0.5958979805231206 -0.3097336757510830 0.2086733033047175 0.4535357098437908 0.1062866148880810 -0.3964092656837799 -0.2211800890450648 0.0350667323996154
-0.0248567764822071 0.2810759958040465 0.1653113624869875 0.3528780198620394 0.0254898556119200 0.4450432900616098 0.2950206358263727 -0.1617837757183794 -0.0376369332204945 -0.6746752660482708
Orthogonality of V: || V^T V - I ||_F = .25E-14
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|