File: MB03XS.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (225 lines) | stat: -rw-r--r-- 7,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
<HTML>
<HEAD><TITLE>MB03XS - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03XS">MB03XS</A></H2>
<H3>
Eigenvalues and real skew-Hamiltonian Schur form of a skew-Hamiltonian matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the eigenvalues and real skew-Hamiltonian Schur form of
  a skew-Hamiltonian matrix,

                [  A   G  ]
          W  =  [       T ],
                [  Q   A  ]

  where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric
  matrices. Specifically, an orthogonal symplectic matrix U is
  computed so that

            T       [  Aout  Gout  ]
           U W U =  [            T ] ,
                    [    0   Aout  ]

  where Aout is in Schur canonical form (as returned by the LAPACK
  routine DHSEQR). That is, Aout is block upper triangular with
  1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has
  its diagonal elements equal and its off-diagonal elements of
  opposite sign.

  Optionally, the matrix U is returned in terms of its first N/2
  rows

                   [  U1   U2 ]
               U = [          ].
                   [ -U2   U1 ]

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03XS( JOBU, N, A, LDA, QG, LDQG, U1, LDU1, U2, LDU2,
     $                   WR, WI, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOBU
      INTEGER           INFO, LDA, LDQG, LDU1, LDU2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), QG(LDQG,*), U1(LDU1,*),
     $                  U2(LDU2,*), WI(*), WR(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOBU    CHARACTER*1
          Specifies whether matrix U is computed or not, as follows:
          = 'N': transformation matrix U is not computed;
          = 'U': transformation matrix U is computed.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.  N &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A.
          On exit, the leading N-by-N part of this array contains
          the matrix Aout in Schur canonical form.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  QG      (input/output) DOUBLE PRECISION array, dimension
                         (LDQG,N+1)
          On entry, the leading N-by-N+1 part of this array must
          contain in columns 1:N the strictly lower triangular part
          of the matrix Q and in columns 2:N+1 the strictly upper
          triangular part of the matrix G.
          On exit, the leading N-by-N+1 part of this array contains
          in columns 2:N+1 the strictly upper triangular part of the
          skew-symmetric matrix Gout. The part which contained the
          matrix Q is set to zero.
          Note that the parts containing the diagonal and the first
          superdiagonal of this array are not overwritten by zeros
          only if JOBU = 'U' or LDWORK &gt;= 2*N*N - N.

  LDQG    INTEGER
          The leading dimension of the array QG.  LDQG &gt;= MAX(1,N).

  U1      (output) DOUBLE PRECISION array, dimension (LDU1,N)
          On exit, if JOBU = 'U', the leading N-by-N part of this
          array contains the matrix U1.
          If JOBU = 'N', this array is not referenced.

  LDU1    INTEGER
          The leading dimension of the array U1.
          LDU1 &gt;= MAX(1,N),  if JOBU = 'U';
          LDU1 &gt;= 1,         if JOBU = 'N'.

  U2      (output) DOUBLE PRECISION array, dimension (LDU2,N)
          On exit, if JOBU = 'U', the leading N-by-N part of this
          array contains the matrix U2.
          If JOBU = 'N', this array is not referenced.

  LDU2    INTEGER
          The leading dimension of the array U2.
          LDU2 &gt;= MAX(1,N),  if JOBU = 'U';
          LDU2 &gt;= 1,         if JOBU = 'N'.

  WR      (output) DOUBLE PRECISION array, dimension (N)
  WI      (output) DOUBLE PRECISION array, dimension (N)
          The real and imaginary parts, respectively, of the
          eigenvalues of Aout, which are half of the eigenvalues
          of W. The eigenvalues are stored in the same order as on
          the diagonal of Aout, with WR(i) = Aout(i,i) and, if
          Aout(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) &gt; 0
          and WI(i+1) = -WI(i).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal value
          of LDWORK.
          On exit, if  INFO = -14,  DWORK(1)  returns the minimum
          value of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX(1,(N+5)*N),      if JOBU = 'U';
          LDWORK &gt;= MAX(1,5*N,(N+1)*N),  if JOBU = 'N'.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          &gt; 0:  if INFO = i, DHSEQR failed to compute all of the
                eigenvalues.  Elements 1:ILO-1 and i+1:N of WR
                and WI contain those eigenvalues which have been
                successfully computed. The matrix A (and QG) has
                been partially reduced; namely, A is upper
                Hessenberg in the rows and columns ILO through i.
                (See DHSEQR for details.)

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  First, using the SLICOT Library routine MB04RB, an orthogonal
  symplectic matrix UP is computed so that

             T      [  AP  GP  ]
         UP W UP =  [        T ]
                    [  0   AP  ]

  is in Paige/Van Loan form. Next, the LAPACK routine DHSEQR is
  applied to the matrix AP to compute an orthogonal matrix V so
  that Aout = V'*AP*V is in Schur canonical form.
  Finally, the transformations

                    [ V  0 ]
          U =  UP * [      ],     Gout = V'*G*V,
                    [ 0  V ]

  using the SLICOT Library routine MB01LD for the latter, are
  performed.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Van Loan, C.F.
      A symplectic method for approximating all the eigenvalues of
      a Hamiltonian matrix.
      Linear Algebra and its Applications, 61, pp. 233-251, 1984.

  [2] Kressner, D.
      Block algorithms for orthogonal symplectic factorizations.
      BIT, 43 (4), pp. 775-790, 2003.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>