1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
<HTML>
<HEAD><TITLE>MB03YA - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03YA">MB03YA</A></H2>
<H3>
Annihilation of one or two entries on the subdiagonal of a Hessenberg matrix corresponding to zero elements on the diagonal of a triangular matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To annihilate one or two entries on the subdiagonal of the
Hessenberg matrix A for dealing with zero elements on the diagonal
of the triangular matrix B.
MB03YA is an auxiliary routine called by SLICOT Library routines
MB03XP and MB03YD.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03YA( WANTT, WANTQ, WANTZ, N, ILO, IHI, ILOQ, IHIQ,
$ POS, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO )
C .. Scalar Arguments ..
LOGICAL WANTQ, WANTT, WANTZ
INTEGER IHI, IHIQ, ILO, ILOQ, INFO, LDA, LDB, LDQ, LDZ,
$ N, POS
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
WANTT LOGICAL
Indicates whether the user wishes to compute the full
Schur form or the eigenvalues only, as follows:
= .TRUE. : Compute the full Schur form;
= .FALSE.: compute the eigenvalues only.
WANTQ LOGICAL
Indicates whether or not the user wishes to accumulate
the matrix Q as follows:
= .TRUE. : The matrix Q is updated;
= .FALSE.: the matrix Q is not required.
WANTZ LOGICAL
Indicates whether or not the user wishes to accumulate
the matrix Z as follows:
= .TRUE. : The matrix Z is updated;
= .FALSE.: the matrix Z is not required.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrices A and B. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that the matrices A and B are already
(quasi) upper triangular in rows and columns 1:ILO-1 and
IHI+1:N. The routine works primarily with the submatrices
in rows and columns ILO to IHI, but applies the
transformations to all the rows and columns of the
matrices A and B, if WANTT = .TRUE..
1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
ILOQ (input) INTEGER
IHIQ (input) INTEGER
Specify the rows of Q and Z to which transformations
must be applied if WANTQ = .TRUE. and WANTZ = .TRUE.,
respectively.
1 <= ILOQ <= ILO; IHI <= IHIQ <= N.
POS (input) INTEGER
The position of the zero element on the diagonal of B.
ILO <= POS <= IHI.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the upper Hessenberg matrix A.
On exit, the leading N-by-N part of this array contains
the updated matrix A where A(POS,POS-1) = 0, if POS > ILO,
and A(POS+1,POS) = 0, if POS < IHI.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the leading N-by-N part of this array must
contain an upper triangular matrix B with B(POS,POS) = 0.
On exit, the leading N-by-N part of this array contains
the updated upper triangular matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., then the leading N-by-N part
of this array must contain the current matrix Q of
transformations accumulated by MB03XP.
On exit, if WANTQ = .TRUE., then the leading N-by-N part
of this array contains the matrix Q updated in the
submatrix Q(ILOQ:IHIQ,ILO:IHI).
If WANTQ = .FALSE., Q is not referenced.
LDQ INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= MAX(1,N).
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., then the leading N-by-N part
of this array must contain the current matrix Z of
transformations accumulated by MB03XP.
On exit, if WANTZ = .TRUE., then the leading N-by-N part
of this array contains the matrix Z updated in the
submatrix Z(ILOQ:IHIQ,ILO:IHI).
If WANTZ = .FALSE., Z is not referenced.
LDZ INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= MAX(1,N).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The method is illustrated by Wilkinson diagrams for N = 5,
POS = 3:
[ x x x x x ] [ x x x x x ]
[ x x x x x ] [ o x x x x ]
A = [ o x x x x ], B = [ o o o x x ].
[ o o x x x ] [ o o o x x ]
[ o o o x x ] [ o o o o x ]
First, a QR factorization is applied to A(1:3,1:3) and the
resulting nonzero in the updated matrix B is immediately
annihilated by a Givens rotation acting on columns 1 and 2:
[ x x x x x ] [ x x x x x ]
[ x x x x x ] [ o x x x x ]
A = [ o o x x x ], B = [ o o o x x ].
[ o o x x x ] [ o o o x x ]
[ o o o x x ] [ o o o o x ]
Secondly, an RQ factorization is applied to A(4:5,4:5) and the
resulting nonzero in the updated matrix B is immediately
annihilated by a Givens rotation acting on rows 4 and 5:
[ x x x x x ] [ x x x x x ]
[ x x x x x ] [ o x x x x ]
A = [ o o x x x ], B = [ o o o x x ].
[ o o o x x ] [ o o o x x ]
[ o o o x x ] [ o o o o x ]
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Bojanczyk, A.W., Golub, G.H., and Van Dooren, P.
The periodic Schur decomposition: Algorithms and applications.
Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
1992.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires O(N**2) floating point operations and is
backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|