File: MB04BD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (602 lines) | stat: -rw-r--r-- 25,688 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
<HTML>
<HEAD><TITLE>MB04BD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04BD">MB04BD</A></H2>
<H3>
Eigenvalues of a real skew-Hamiltonian/Hamiltonian pencil
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the eigenvalues of a real N-by-N skew-Hamiltonian/
  Hamiltonian pencil aS - bH with

        (  A  D  )         (  C  V  )
    S = (        ) and H = (        ).                           (1)
        (  E  A' )         (  W -C' )

  Optionally, if JOB = 'T', decompositions of S and H will be
  computed via orthogonal transformations Q1 and Q2 as follows:

                    (  Aout  Dout  )
    Q1' S J Q1 J' = (              ),
                    (   0    Aout' )

                    (  Bout  Fout  )
    J' Q2' J S Q2 = (              ) =: T,                       (2)
                    (   0    Bout' )

               (  C1out  Vout  )            (  0  I  )
    Q1' H Q2 = (               ), where J = (        )
               (  0     C2out' )            ( -I  0  )

  and Aout, Bout, C1out are upper triangular, C2out is upper quasi-
  triangular and Dout and Fout are skew-symmetric. The notation M'
  denotes the transpose of the matrix M.
  Optionally, if COMPQ1 = 'I' or COMPQ1 = 'U', then the orthogonal
  transformation matrix Q1 will be computed.
  Optionally, if COMPQ2 = 'I' or COMPQ2 = 'U', then the orthogonal
  transformation matrix Q2 will be computed.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04BD( JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,
     $                   LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,
     $                   LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,
     $                   LIWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ1, COMPQ2, JOB
      INTEGER            INFO, LDA, LDB, LDC1, LDC2, LDDE, LDF, LDQ1,
     $                   LDQ2, LDVW, LDWORK, LIWORK, N
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), C1( LDC1, * ),
     $                   C2( LDC2, * ), DE( LDDE, * ), DWORK( * ),
     $                   F( LDF, * ), Q1( LDQ1, * ), Q2( LDQ2, * ),
     $                   VW( LDVW, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOB     CHARACTER*1
          Specifies the computation to be performed, as follows:
          = 'E': compute the eigenvalues only; S and H will not
                 necessarily be transformed as in (2).
          = 'T': put S and H into the forms in (2) and return the
                 eigenvalues in ALPHAR, ALPHAI and BETA.

  COMPQ1  CHARACTER*1
          Specifies whether to compute the orthogonal transformation
          matrix Q1, as follows:
          = 'N':  Q1 is not computed;
          = 'I':  the array Q1 is initialized internally to the unit
                  matrix, and the orthogonal matrix Q1 is returned;
          = 'U':  the array Q1 contains an orthogonal matrix Q on
                  entry, and the product Q*Q1 is returned, where Q1
                  is the product of the orthogonal transformations
                  that are applied to the pencil aS - bH to reduce
                  S and H to the forms in (2), for COMPQ1 = 'I'.

  COMPQ2  CHARACTER*1
          Specifies whether to compute the orthogonal transformation
          matrix Q2, as follows:
          = 'N':  Q2 is not computed;
          = 'I':  on exit, the array Q2 contains the orthogonal
                  matrix Q2;
          = 'U':  on exit, the array Q2 contains the matrix product
                  J*Q*J'*Q2, where Q2 is the product of the
                  orthogonal transformations that are applied to
                  the pencil aS - bH to reduce S and H to the forms
                  in (2), for COMPQ2 = 'I'.
                  Setting COMPQ2 &lt;&gt; 'N' assumes COMPQ2 = COMPQ1.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil aS - bH.  N &gt;= 0, even.

  A       (input/output) DOUBLE PRECISION array, dimension
                         (LDA, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix A.
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix Aout; otherwise, it contains the
          upper triangular matrix A obtained just before the
          application of the periodic QZ algorithm.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1, N/2).

  DE      (input/output) DOUBLE PRECISION array, dimension
                         (LDDE, N/2+1)
          On entry, the leading N/2-by-N/2 strictly lower triangular
          part of this array must contain the strictly lower
          triangular part of the skew-symmetric matrix E, and the
          N/2-by-N/2 strictly upper triangular part of the submatrix
          in the columns 2 to N/2+1 of this array must contain the
          strictly upper triangular part of the skew-symmetric
          matrix D.
          The entries on the diagonal and the first superdiagonal of
          this array need not be set, but are assumed to be zero.
          On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
          upper triangular part of the submatrix in the columns 2 to
          N/2+1 of this array contains the strictly upper triangular
          part of the skew-symmetric matrix Dout.
          If JOB = 'E', the leading N/2-by-N/2 strictly upper
          triangular part of the submatrix in the columns 2 to N/2+1
          of this array contains the strictly upper triangular part
          of the skew-symmetric matrix D just before the application
          of the periodic QZ algorithm. The remaining entries are
          meaningless.

  LDDE    INTEGER
          The leading dimension of the array DE.
          LDDE &gt;= MAX(1, N/2).

  C1      (input/output) DOUBLE PRECISION array, dimension
                         (LDC1, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix C1 = C.
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix C1out; otherwise, it contains
          the upper triangular matrix C1 obtained just before the
          application of the periodic QZ algorithm.

  LDC1    INTEGER
          The leading dimension of the array C1.
          LDC1 &gt;= MAX(1, N/2).

  VW      (input/output) DOUBLE PRECISION array, dimension
                         (LDVW, N/2+1)
          On entry, the leading N/2-by-N/2 lower triangular part of
          this array must contain the lower triangular part of the
          symmetric matrix W, and the N/2-by-N/2 upper triangular
          part of the submatrix in the columns 2 to N/2+1 of this
          array must contain the upper triangular part of the
          symmetric matrix V.
          On exit, if JOB = 'T', the N/2-by-N/2 part in the columns
          2 to N/2+1 of this array contains the matrix Vout.
          If JOB = 'E', the N/2-by-N/2 part in the columns 2 to
          N/2+1 of this array contains the matrix V just before the
          application of the periodic QZ algorithm.

  LDVW    INTEGER
          The leading dimension of the array VW.
          LDVW &gt;= MAX(1, N/2).

  Q1      (input/output) DOUBLE PRECISION array, dimension (LDQ1, N)
          On entry, if COMPQ1 = 'U', then the leading N-by-N part of
          this array must contain a given matrix Q, and on exit,
          the leading N-by-N part of this array contains the product
          of the input matrix Q and the transformation matrix Q1
          used to transform the matrices S and H.
          On exit, if COMPQ1 = 'I', then the leading N-by-N part of
          this array contains the orthogonal transformation matrix
          Q1.
          If COMPQ1 = 'N', this array is not referenced.

  LDQ1    INTEGER
          The leading dimension of the array Q1.
          LDQ1 &gt;= 1,         if COMPQ1 = 'N';
          LDQ1 &gt;= MAX(1, N), if COMPQ1 = 'I' or COMPQ1 = 'U'.

  Q2      (output) DOUBLE PRECISION array, dimension (LDQ2, N)
          On exit, if COMPQ2 = 'U', then the leading N-by-N part of
          this array contains the product of the matrix J*Q*J' and
          the transformation matrix Q2 used to transform the
          matrices S and H.
          On exit, if COMPQ2 = 'I', then the leading N-by-N part of
          this array contains the orthogonal transformation matrix
          Q2.
          If COMPQ2 = 'N', this array is not referenced.

  LDQ2    INTEGER
          The leading dimension of the array Q2.
          LDQ2 &gt;= 1,         if COMPQ2 = 'N';
          LDQ2 &gt;= MAX(1, N), if COMPQ2 = 'I' or COMPQ2 = 'U'.

  B       (output) DOUBLE PRECISION array, dimension (LDB, N/2)
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix Bout; otherwise, it contains the
          upper triangular matrix B obtained just before the
          application of the periodic QZ algorithm.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= MAX(1, N/2).

  F       (output) DOUBLE PRECISION array, dimension (LDF, N/2)
          On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
          upper triangular part of this array contains the strictly
          upper triangular part of the skew-symmetric matrix Fout.
          If JOB = 'E', the leading N/2-by-N/2 strictly upper
          triangular part of this array contains the strictly upper
          triangular part of the skew-symmetric matrix F just before
          the application of the periodic QZ algorithm.
          The entries on the leading N/2-by-N/2 lower triangular
          part of this array are not referenced.

  LDF     INTEGER
          The leading dimension of the array F.  LDF &gt;= MAX(1, N/2).

  C2      (output) DOUBLE PRECISION array, dimension (LDC2, N/2)
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix C2out; otherwise, it contains
          the upper Hessenberg matrix C2 obtained just before the
          application of the periodic QZ algorithm.

  LDC2    INTEGER
          The leading dimension of the array C2.
          LDC2 &gt;= MAX(1, N/2).

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N/2)
          The real parts of each scalar alpha defining an eigenvalue
          of the pencil aS - bH.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N/2)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of the pencil aS - bH.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real.

  BETA    (output) DOUBLE PRECISION array, dimension (N/2)
          The scalars beta that define the eigenvalues of the pencil
          aS - bH.
          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
          beta = BETA(j) represent the j-th eigenvalue of the pencil
          aS - bH, in the form lambda = alpha/beta. Since lambda may
          overflow, the ratios should not, in general, be computed.
          Due to the skew-Hamiltonian/Hamiltonian structure of the
          pencil, for every eigenvalue lambda, -lambda is also an
          eigenvalue, and thus it has only to be saved once in
          ALPHAR, ALPHAI and BETA.
          Specifically, only eigenvalues with imaginary parts
          greater than or equal to zero are stored; their conjugate
          eigenvalues are not stored. If imaginary parts are zero
          (i.e., for real eigenvalues), only positive eigenvalues
          are stored. The remaining eigenvalues have opposite signs.
          As a consequence, pairs of complex eigenvalues, stored in
          consecutive locations, are not complex conjugate.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (LIWORK)
          On exit, if INFO = 3, IWORK(1) contains the number of
          (pairs of) possibly inaccurate eigenvalues, q &lt;= N/2, and
          IWORK(2), ..., IWORK(q+1) indicate their indices.
          Specifically, a positive value is an index of a real or
          purely imaginary eigenvalue, corresponding to a 1-by-1
          block, while the absolute value of a negative entry in
          IWORK is an index to the first eigenvalue in a pair of
          consecutively stored eigenvalues, corresponding to a
          2-by-2 block. A 2-by-2 block may have two complex, two
          real, two purely imaginary, or one real and one purely
          imaginary eigenvalue.
          For i = q+2, ..., 2*q+1, IWORK(i) contains a pointer to
          the starting location in DWORK of the (i-q-1)-th quadruple
          of 1-by-1 blocks, if IWORK(i-q) &gt; 0, or 2-by-2 blocks,
          if IWORK(i-q) &lt; 0, defining unreliable eigenvalues.
          IWORK(2*q+2) contains the number of the 1-by-1 blocks, and
          IWORK(2*q+3) contains the number of the 2-by-2 blocks,
          corresponding to unreliable eigenvalues. IWORK(2*q+4)
          contains the total number t of the 2-by-2 blocks.
          If INFO = 0, then q = 0, therefore IWORK(1) = 0.

  LIWORK  INTEGER
          The dimension of the array IWORK.  LIWORK &gt;= N+12.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
          optimal LDWORK, and DWORK(2), ..., DWORK(5) contain the
          Frobenius norms of the factors of the formal matrix
          product used by the algorithm. In addition, DWORK(6), ...,
          DWORK(5+4*s) contain the s quadruple values corresponding
          to the 1-by-1 blocks. Their eigenvalues are real or purely
          imaginary. Such an eigenvalue is obtained from
          -i*sqrt(a1*a3/a2/a4), but always taking a positive sign,
          where a1, ..., a4 are the corresponding quadruple values.
          Moreover, DWORK(6+4*s), ..., DWORK(5+4*s+16*t) contain the
          t groups of quadruple 2-by-2 matrices corresponding to the
          2-by-2 blocks. Their eigenvalue pairs are either complex,
          or placed on the real and imaginary axes. Such an
          eigenvalue pair is obtained as -1i*sqrt(ev), but taking
          positive imaginary parts, where ev are the eigenvalues of
          the product A1*inv(A2)*A3*inv(A4), where A1, ..., A4
          define the corresponding 2-by-2 matrix quadruple.
          On exit, if INFO = -27, DWORK(1) returns the minimum value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          If JOB = 'E' and COMPQ1 = 'N' and COMPQ2 = 'N',
             LDWORK &gt;= N**2 + MAX(L,36);
          if JOB = 'T' or COMPQ1 &lt;&gt; 'N' or COMPQ2 &lt;&gt; 'N',
             LDWORK &gt;= 2*N**2 + MAX(L,36);
          where
             L = 4*N + 4, if N/2 is even, and
             L = 4*N,     if N/2 is odd.
          For good performance LDWORK should generally be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          &lt; 0: if INFO = -i, the i-th argument had an illegal value;
          = 1: problem during computation of the eigenvalues;
          = 2: periodic QZ algorithm did not converge in the SLICOT
               Library subroutine MB03BD;
          = 3: some eigenvalues might be inaccurate, and details can
               be found in IWORK and DWORK. This is a warning.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses Givens rotations and Householder reflections to
  annihilate elements in S, T, and H such that A, B, and C1 are
  upper triangular and C2 is upper Hessenberg. Finally, the periodic
  QZ algorithm is applied to transform C2 to upper quasi-triangular
  form while A, B, and C1 stay in upper triangular form.
  See also page 27 in [1] for more details.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                                                            3
  The algorithm is numerically backward stable and needs O(N ) real
  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB04BD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            NMAX
      PARAMETER          ( NMAX = 50 )
      INTEGER            LDA, LDB, LDC1, LDC2, LDDE, LDF, LDQ1, LDQ2,
     $                   LDVW, LDWORK, LIWORK
      PARAMETER          (  LDA = NMAX/2,  LDB = NMAX/2, LDC1 = NMAX/2,
     $                     LDC2 = NMAX/2, LDDE = NMAX/2,  LDF = NMAX/2,
     $                     LDQ1 = NMAX, LDQ2 = NMAX, LDVW = NMAX/2,
     $                     LDWORK = 2*NMAX*NMAX + MAX( 4*NMAX, 36 ),
     $                     LIWORK = MAX( NMAX + 12, 2*NMAX + 3 ) )
*
*     .. Local Scalars ..
      CHARACTER          COMPQ1, COMPQ2, JOB
      INTEGER            I, INFO, J, M, N
*
*     .. Local Arrays ..
      INTEGER            IWORK( LIWORK )
      DOUBLE PRECISION   A( LDA, NMAX/2 ), ALPHAI( NMAX/2 ),
     $                   ALPHAR( NMAX/2 ), B( LDB, NMAX/2 ),
     $                   BETA( NMAX/2 ), C1( LDC1, NMAX/2 ),
     $                   C2( LDC2, NMAX/2 ), DE( LDDE, NMAX/2+1 ),
     $                   DWORK( LDWORK ),  F( LDF, NMAX/2 ),
     $                   Q1( LDQ1, NMAX ), Q2( LDQ2, NMAX ),
     $                   VW( LDVW, NMAX/2+1 )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           MB04BD
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*
*     .. Executable Statements ..
*
      WRITE( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) JOB, COMPQ1, COMPQ2, N
      IF( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
         M = N/2
         READ( NIN, FMT = * ) ( (  A( I, J ), J = 1, M   ), I = 1, M )
         READ( NIN, FMT = * ) ( ( DE( I, J ), J = 1, M+1 ), I = 1, M )
         READ( NIN, FMT = * ) ( ( C1( I, J ), J = 1, M   ), I = 1, M )
         READ( NIN, FMT = * ) ( ( VW( I, J ), J = 1, M+1 ), I = 1, M )
*        Compute the eigenvalues of a real skew-Hamiltonian/Hamiltonian
*        pencil.
         CALL MB04BD( JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,
     $                LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,
     $                LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,
     $                LIWORK, DWORK, LDWORK, INFO )
*
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE
            WRITE( NOUT, FMT = 99996 )
            DO 10 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( A( I, J ), J = 1, M )
   10       CONTINUE
            WRITE( NOUT, FMT = 99994 )
            DO 20 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( DE( I, J ), J = 2, M+1 )
   20       CONTINUE
            WRITE( NOUT, FMT = 99993 )
            DO 30 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( B( I, J ), J = 1, M )
   30       CONTINUE
            WRITE( NOUT, FMT = 99992 )
            DO 40 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( F( I, J ), J = 1, M )
   40       CONTINUE
            WRITE( NOUT, FMT = 99991 )
            DO 50 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( C1( I, J ), J = 1, M )
   50       CONTINUE
            WRITE( NOUT, FMT = 99990 )
            DO 60 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( C2( I, J ), J = 1, M )
   60       CONTINUE
            WRITE( NOUT, FMT = 99989 )
            DO 70 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( VW( I, J ), J = 2, M+1 )
   70       CONTINUE
            WRITE( NOUT, FMT = 99988 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M )
            WRITE( NOUT, FMT = 99987 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M )
            WRITE( NOUT, FMT = 99986 )
            WRITE( NOUT, FMT = 99995 ) (   BETA( I ), I = 1, M )
            WRITE( NOUT, FMT = 99985 )
            IF( .NOT.LSAME( COMPQ1, 'N' ) ) THEN
               DO 80 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q1( I, J ), J = 1, N )
   80          CONTINUE
            END IF
            IF( .NOT.LSAME( COMPQ2, 'N' ) ) THEN
               WRITE( NOUT, FMT = 99984 )
               DO 90 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q2( I, J ), J = 1, N )
   90          CONTINUE
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT( 'MB04BD EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT( 'INFO on exit from MB04BD = ', I2 )
99996 FORMAT( 'The matrix A on exit is ' )
99995 FORMAT( 50( 1X, F8.4 ) )
99994 FORMAT( 'The matrix D on exit is ' )
99993 FORMAT( 'The matrix B on exit is ' )
99992 FORMAT( 'The matrix F on exit is ' )
99991 FORMAT( 'The matrix C1 on exit is ' )
99990 FORMAT( 'The matrix C2 on exit is ' )
99989 FORMAT( 'The matrix V on exit is ' )
99988 FORMAT( 'The vector ALPHAR is ' )
99987 FORMAT( 'The vector ALPHAI is ' )
99986 FORMAT( 'The vector BETA is ' )
99985 FORMAT( 'The matrix Q1 is ' )
99984 FORMAT( 'The matrix Q2 is ' )
      END
</PRE>
<B>Program Data</B>
<PRE>
MB04BD EXAMPLE PROGRAM DATA
   T   I   I   8
   3.1472   1.3236   4.5751   4.5717
   4.0579  -4.0246   4.6489  -0.1462
  -3.7301  -2.2150  -3.4239   3.0028
   4.1338   0.4688   4.7059  -3.5811
   0.0000   0.0000  -1.5510  -4.5974  -2.5127
   3.5071   0.0000   0.0000   1.5961   2.4490  
  -3.1428   2.5648   0.0000   0.0000  -0.0596 
   3.0340   2.4892  -1.1604   0.0000   0.0000
   0.6882  -3.3782  -3.3435   1.8921
  -0.3061   2.9428   1.0198   2.4815
  -4.8810  -1.8878  -2.3703  -0.4946
  -1.6288   0.2853   1.5408  -4.1618
  -2.4013  -2.7102   0.3834  -3.9335   3.1730
  -3.1815  -2.3620   4.9613   4.6190   3.6869
   3.6929   0.7970   0.4986  -4.9537  -4.1556
   3.5303   1.2206  -1.4905   0.1325  -1.0022

</PRE>
<B>Program Results</B>
<PRE>
MB04BD EXAMPLE PROGRAM RESULTS
The matrix A on exit is 
  -4.7460   4.1855   3.2696  -0.2244
   0.0000   6.4157   2.8287   1.4553
   0.0000   0.0000   7.4626   1.5726
   0.0000   0.0000   0.0000   8.8702
The matrix D on exit is 
   0.0000  -1.3137  -6.3615  -0.8940
   0.0000   0.0000   1.0704  -0.0659
   4.4324   0.0000   0.0000  -0.6922
   0.5254   1.6653   0.0000   0.0000
The matrix B on exit is 
  -6.4937  -2.1982  -1.3881   1.3477
   0.0000   4.6929   0.6650  -4.1191
   0.0000   0.0000   9.1725   3.4721
   0.0000   0.0000   0.0000   7.2106
The matrix F on exit is 
   0.0000  -1.1367   2.2966  -1.0744
   0.0000   0.0000   3.7875   0.9427
   0.0000   0.0000   0.0000  -4.7136
   0.0000   0.0000   0.0000   0.0000
The matrix C1 on exit is 
   6.9525  -4.9881   2.3661   4.2188
   0.0000   8.5009   0.7182   5.5533
   0.0000   0.0000  -4.6650  -2.8177
   0.0000   0.0000   0.0000   1.5124
The matrix C2 on exit is 
  -5.4562  -2.1348   4.9694  -2.2744
   2.5550  -7.9616   1.1516   3.4912
   0.0000   0.0000   4.8504   0.5046
   0.0000   0.0000   0.0000   4.4394
The matrix V on exit is 
   0.9136   4.1106  -0.0079   3.5789
  -1.1553  -1.4785  -1.5155  -0.8018
  -2.2167   4.8029   1.3645   2.5202
  -1.0994  -0.6144   0.3970   2.0730
The vector ALPHAR is 
   0.8314  -0.8314   0.8131   0.0000
The vector ALPHAI is 
   0.4372   0.4372   0.0000   0.9164
The vector BETA is 
   0.7071   0.7071   1.4142   2.8284
The matrix Q1 is 
  -0.0098   0.1978   0.2402   0.5274   0.1105  -0.0149  -0.1028   0.7759
  -0.6398   0.2356   0.2765  -0.1301  -0.5351  -0.3078   0.2435   0.0373
   0.1766  -0.4781   0.2657  -0.5415   0.0968  -0.4663  -0.0983   0.3741
   0.3207  -0.1980   0.1141   0.0240  -0.1712   0.2630   0.8513   0.1451
  -0.6551  -0.2956  -0.0288  -0.1169   0.5593   0.3381   0.1753   0.1055
  -0.0246  -0.2759   0.2470  -0.1408  -0.4837   0.6567  -0.4042   0.1172
  -0.0772  -0.0121  -0.8394  -0.1852  -0.2673   0.0046   0.0159   0.4282
   0.1442   0.6884   0.1257  -0.5860   0.2110   0.2699   0.0363   0.1657
The matrix Q2 is 
  -0.2891   0.3096   0.6312   0.6498   0.0000   0.0000   0.0000   0.0000
   0.1887   0.1936  -0.3857   0.3664   0.5660   0.1238  -0.2080  -0.5148
  -0.2492  -0.2877  -0.0874   0.1110  -0.1081  -0.2999   0.6800  -0.5207
  -0.7430  -0.0646  -0.4689   0.1556  -0.2401   0.0181  -0.3724   0.0562
  -0.0999  -0.2026  -0.0355   0.0866   0.5587  -0.6625  -0.0114   0.4349
  -0.4357   0.1209   0.0489  -0.2990   0.5094   0.5191   0.3837   0.1661
  -0.2429   0.4131   0.2549  -0.5525   0.0749  -0.3829  -0.2690  -0.4190
   0.0889   0.7439  -0.3960   0.0697  -0.1821  -0.1988   0.3687   0.2616
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>