1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
<HTML>
<HEAD><TITLE>MB04BP - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04BP">MB04BP</A></H2>
<H3>
Eigenvalues of a real skew-Hamiltonian/Hamiltonian pencil (applying transformations on panels of columns)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/
Hamiltonian pencil aS - bH with
( A D ) ( C V )
S = ( ) and H = ( ). (1)
( E A' ) ( W -C' )
Optionally, if JOB = 'T', decompositions of S and H will be
computed via orthogonal transformations Q1 and Q2 as follows:
( Aout Dout )
Q1' S J Q1 J' = ( ),
( 0 Aout' )
( Bout Fout )
J' Q2' J S Q2 = ( ) =: T, (2)
( 0 Bout' )
( C1out Vout ) ( 0 I )
Q1' H Q2 = ( ), where J = ( )
( 0 C2out' ) ( -I 0 )
and Aout, Bout, C1out are upper triangular, C2out is upper quasi-
triangular and Dout and Fout are skew-symmetric. The notation M'
denotes the transpose of the matrix M.
Optionally, if COMPQ1 = 'I' or COMPQ1 = 'U', then the orthogonal
transformation matrix Q1 will be computed.
Optionally, if COMPQ2 = 'I' or COMPQ2 = 'U', then the orthogonal
transformation matrix Q2 will be computed.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04BP( JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,
$ LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,
$ LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,
$ LIWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ1, COMPQ2, JOB
INTEGER INFO, LDA, LDB, LDC1, LDC2, LDDE, LDF, LDQ1,
$ LDQ2, LDVW, LDWORK, LIWORK, N
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDB, * ), BETA( * ), C1( LDC1, * ),
$ C2( LDC2, * ), DE( LDDE, * ), DWORK( * ),
$ F( LDF, * ), Q1( LDQ1, * ), Q2( LDQ2, * ),
$ VW( LDVW, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies the computation to be performed, as follows:
= 'E': compute the eigenvalues only; S and H will not
necessarily be transformed as in (2).
= 'T': put S and H into the forms in (2) and return the
eigenvalues in ALPHAR, ALPHAI and BETA.
COMPQ1 CHARACTER*1
Specifies whether to compute the orthogonal transformation
matrix Q1, as follows:
= 'N': Q1 is not computed;
= 'I': the array Q1 is initialized internally to the unit
matrix, and the orthogonal matrix Q1 is returned;
= 'U': the array Q1 contains an orthogonal matrix Q on
entry, and the product Q*Q1 is returned, where Q1
is the product of the orthogonal transformations
that are applied to the pencil aS - bH to reduce
S and H to the forms in (2), for COMPQ1 = 'I'.
COMPQ2 CHARACTER*1
Specifies whether to compute the orthogonal transformation
matrix Q2, as follows:
= 'N': Q2 is not computed;
= 'I': on exit, the array Q2 contains the orthogonal
matrix Q2;
= 'U': on exit, the array Q2 contains the matrix product
J*Q*J'*Q2, where Q2 is the product of the
orthogonal transformations that are applied to
the pencil aS - bH to reduce S and H to the forms
in (2), for COMPQ2 = 'I'.
Setting COMPQ2 <> 'N' assumes COMPQ2 = COMPQ1.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the pencil aS - bH. N >= 0, even.
A (input/output) DOUBLE PRECISION array, dimension
(LDA, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the matrix A.
On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
array contains the matrix Aout; otherwise, it contains the
upper triangular matrix A obtained just before the
application of the periodic QZ algorithm.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1, N/2).
DE (input/output) DOUBLE PRECISION array, dimension
(LDDE, N/2+1)
On entry, the leading N/2-by-N/2 strictly lower triangular
part of this array must contain the strictly lower
triangular part of the skew-symmetric matrix E, and the
N/2-by-N/2 strictly upper triangular part of the submatrix
in the columns 2 to N/2+1 of this array must contain the
strictly upper triangular part of the skew-symmetric
matrix D.
The entries on the diagonal and the first superdiagonal of
this array need not be set, but are assumed to be zero.
On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
upper triangular part of the submatrix in the columns 2 to
N/2+1 of this array contains the strictly upper triangular
part of the skew-symmetric matrix Dout.
If JOB = 'E', the leading N/2-by-N/2 strictly upper
triangular part of the submatrix in the columns 2 to N/2+1
of this array contains the strictly upper triangular part
of the skew-symmetric matrix D just before the application
of the periodic QZ algorithm. The remaining entries are
meaningless.
LDDE INTEGER
The leading dimension of the array DE.
LDDE >= MAX(1, N/2).
C1 (input/output) DOUBLE PRECISION array, dimension
(LDC1, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the matrix C1 = C.
On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
array contains the matrix C1out; otherwise, it contains
the upper triangular matrix C1 obtained just before the
application of the periodic QZ algorithm.
LDC1 INTEGER
The leading dimension of the array C1.
LDC1 >= MAX(1, N/2).
VW (input/output) DOUBLE PRECISION array, dimension
(LDVW, N/2+1)
On entry, the leading N/2-by-N/2 lower triangular part of
this array must contain the lower triangular part of the
symmetric matrix W, and the N/2-by-N/2 upper triangular
part of the submatrix in the columns 2 to N/2+1 of this
array must contain the upper triangular part of the
symmetric matrix V.
On exit, if JOB = 'T', the N/2-by-N/2 part in the columns
2 to N/2+1 of this array contains the matrix Vout.
If JOB = 'E', the N/2-by-N/2 part in the columns 2 to
N/2+1 of this array contains the matrix V just before the
application of the periodic QZ algorithm.
LDVW INTEGER
The leading dimension of the array VW.
LDVW >= MAX(1, N/2).
Q1 (input/output) DOUBLE PRECISION array, dimension (LDQ1, N)
On entry, if COMPQ1 = 'U', then the leading N-by-N part of
this array must contain a given matrix Q, and on exit,
the leading N-by-N part of this array contains the product
of the input matrix Q and the transformation matrix Q1
used to transform the matrices S and H.
On exit, if COMPQ1 = 'I', then the leading N-by-N part of
this array contains the orthogonal transformation matrix
Q1.
If COMPQ1 = 'N', this array is not referenced.
LDQ1 INTEGER
The leading dimension of the array Q1.
LDQ1 >= 1, if COMPQ1 = 'N';
LDQ1 >= MAX(1, N), if COMPQ1 = 'I' or COMPQ1 = 'U'.
Q2 (output) DOUBLE PRECISION array, dimension (LDQ2, N)
On exit, if COMPQ2 = 'U', then the leading N-by-N part of
this array contains the product of the matrix J*Q*J' and
the transformation matrix Q2 used to transform the
matrices S and H.
On exit, if COMPQ2 = 'I', then the leading N-by-N part of
this array contains the orthogonal transformation matrix
Q2.
If COMPQ2 = 'N', this array is not referenced.
LDQ2 INTEGER
The leading dimension of the array Q2.
LDQ2 >= 1, if COMPQ2 = 'N';
LDQ2 >= MAX(1, N), if COMPQ2 = 'I' or COMPQ2 = 'U'.
B (output) DOUBLE PRECISION array, dimension (LDB, N/2)
On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
array contains the matrix Bout; otherwise, it contains the
upper triangular matrix B obtained just before the
application of the periodic QZ algorithm.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1, N/2).
F (output) DOUBLE PRECISION array, dimension (LDF, N/2)
On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
upper triangular part of this array contains the strictly
upper triangular part of the skew-symmetric matrix Fout.
If JOB = 'E', the leading N/2-by-N/2 strictly upper
triangular part of this array contains the strictly upper
triangular part of the skew-symmetric matrix F just before
the application of the periodic QZ algorithm.
The entries on the leading N/2-by-N/2 lower triangular
part of this array are not referenced.
LDF INTEGER
The leading dimension of the array F. LDF >= MAX(1, N/2).
C2 (output) DOUBLE PRECISION array, dimension (LDC2, N/2)
On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
array contains the matrix C2out; otherwise, it contains
the upper Hessenberg matrix C2 obtained just before the
application of the periodic QZ algorithm.
LDC2 INTEGER
The leading dimension of the array C2.
LDC2 >= MAX(1, N/2).
ALPHAR (output) DOUBLE PRECISION array, dimension (N/2)
The real parts of each scalar alpha defining an eigenvalue
of the pencil aS - bH.
ALPHAI (output) DOUBLE PRECISION array, dimension (N/2)
The imaginary parts of each scalar alpha defining an
eigenvalue of the pencil aS - bH.
If ALPHAI(j) is zero, then the j-th eigenvalue is real.
BETA (output) DOUBLE PRECISION array, dimension (N/2)
The scalars beta that define the eigenvalues of the pencil
aS - bH.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the pencil
aS - bH, in the form lambda = alpha/beta. Since lambda may
overflow, the ratios should not, in general, be computed.
Due to the skew-Hamiltonian/Hamiltonian structure of the
pencil, for every eigenvalue lambda, -lambda is also an
eigenvalue, and thus it has only to be saved once in
ALPHAR, ALPHAI and BETA.
Specifically, only eigenvalues with imaginary parts
greater than or equal to zero are stored; their conjugate
eigenvalues are not stored. If imaginary parts are zero
(i.e., for real eigenvalues), only positive eigenvalues
are stored. The remaining eigenvalues have opposite signs.
As a consequence, pairs of complex eigenvalues, stored in
consecutive locations, are not complex conjugate.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
On exit, if INFO = 3, IWORK(1) contains the number of
(pairs of) possibly inaccurate eigenvalues, q <= N/2, and
IWORK(2), ..., IWORK(q+1) indicate their indices.
Specifically, a positive value is an index of a real or
purely imaginary eigenvalue, corresponding to a 1-by-1
block, while the absolute value of a negative entry in
IWORK is an index to the first eigenvalue in a pair of
consecutively stored eigenvalues, corresponding to a
2-by-2 block. A 2-by-2 block may have two complex, two
real, two purely imaginary, or one real and one purely
imaginary eigenvalue.
For i = q+2, ..., 2*q+1, IWORK(i) contains a pointer to
the starting location in DWORK of the i-th quadruple of
1-by-1 blocks, if IWORK(i-q) > 0, or 2-by-2 blocks,
if IWORK(i-q) < 0, defining unreliable eigenvalues.
IWORK(2*q+2) contains the number of the 1-by-1 blocks, and
IWORK(2*q+3) contains the number of the 2-by-2 blocks,
corresponding to unreliable eigenvalues. IWORK(2*q+4)
contains the total number t of the 2-by-2 blocks.
If INFO = 0, then q = 0, therefore IWORK(1) = 0.
LIWORK INTEGER
The dimension of the array IWORK. LIWORK >= N+12.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
optimal LDWORK, and DWORK(2), ..., DWORK(5) contain the
Frobenius norms of the factors of the formal matrix
product used by the algorithm. In addition, DWORK(6), ...,
DWORK(5+4*s) contain the s quadruple values corresponding
to the 1-by-1 blocks. Their eigenvalues are real or purely
imaginary. Such an eigenvalue is obtained from
-i*sqrt(a1*a3/a2/a4), but always taking a positive sign,
where a1, ..., a4 are the corresponding quadruple values.
Moreover, DWORK(6+4*s), ..., DWORK(5+4*s+16*t) contain the
t groups of quadruple 2-by-2 matrices corresponding to the
2-by-2 blocks. Their eigenvalue pairs are either complex,
or placed on the real and imaginary axes. Such an
eigenvalue pair is obtained as -1i*sqrt(ev), but taking
positive imaginary parts, where ev are the eigenvalues of
the product A1*inv(A2)*A3*inv(A4), where A1, ..., A4
define the corresponding 2-by-2 matrix quadruple.
On exit, if INFO = -27, DWORK(1) returns the minimum value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
If JOB = 'E' and COMPQ1 = 'N' and COMPQ2 = 'N',
LDWORK >= N**2 + MAX(L,36);
if JOB = 'T' or COMPQ1 <> 'N' or COMPQ2 <> 'N',
LDWORK >= 2*N**2 + MAX(L,36);
where
L = 4*N + 4, if N/2 is even, and
L = 4*N, if N/2 is odd.
For good performance LDWORK should generally be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
< 0: if INFO = -i, the i-th argument had an illegal value;
= 1: problem during computation of the eigenvalues;
= 2: periodic QZ algorithm did not converge in the SLICOT
Library subroutine MB03BD;
= 3: some eigenvalues might be inaccurate, and details can
be found in IWORK and DWORK. This is a warning.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm uses Givens rotations and Householder reflections to
annihilate elements in S, T, and H such that A, B, and C1 are
upper triangular and C2 is upper Hessenberg. Finally, the periodic
QZ algorithm is applied to transform C2 to upper quasi-triangular
form while A, B, and C1 stay in upper triangular form.
See also page 27 in [1] for more details.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
Eigenproblems.
Tech. Rep., Technical University Chemnitz, Germany,
Nov. 2007.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm is numerically backward stable and needs O(N ) real
floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
For large values of N, the routine applies the transformations
for reducing T on panels of columns. The user may specify in INFO
the desired number of columns. If on entry INFO < 0, then the
routine estimates a suitable value of this number. If INFO = 0,
the routine MB04BD is directly called.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|