File: MB04ED.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (543 lines) | stat: -rw-r--r-- 22,966 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
<HTML>
<HEAD><TITLE>MB04ED - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04ED">MB04ED</A></H2>
<H3>
Eigenvalues and orthogonal decomposition of a real skew-Hamiltonian/skew-Hamiltonian pencil in factored form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the eigenvalues of a real N-by-N skew-Hamiltonian/
  skew-Hamiltonian pencil aS - bT with

                          (  B  F  )            (  0  I  )
    S = J Z' J' Z and T = (        ), where J = (        ).      (1)
                          (  G  B' )            ( -I  0  )

  Optionally, if JOB = 'T', the pencil aS - bT will be transformed
  to the structured Schur form: an orthogonal transformation matrix
  Q and an orthogonal symplectic transformation matrix U are
  computed, such that

             (  Z11  Z12  )
    U' Z Q = (            ) = Zout, and
             (   0   Z22  )
                                                                 (2)
                  (  Bout  Fout  )
    J Q' J' T Q = (              ),
                  (   0    Bout' )

  where Z11 and Z22' are upper triangular and Bout is upper quasi-
  triangular. The notation M' denotes the transpose of the matrix M.
  Optionally, if COMPQ = 'I', the orthogonal transformation matrix Q
  will be computed.
  Optionally, if COMPU = 'I' or COMPU = 'U', the orthogonal
  symplectic transformation matrix

        (  U1  U2  )
    U = (          )
        ( -U2  U1  )

  will be computed.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG,
     $                   Q, LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI,
     $                   BETA, IWORK, LIWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPU, JOB
      INTEGER            INFO, LDB, LDFG, LDQ, LDU1, LDU2, LDWORK, LDZ,
     $                   LIWORK, N
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), B( LDB, * ),
     $                   BETA( * ), DWORK( * ), FG( LDFG, * ),
     $                   Q( LDQ, * ), U1( LDU1, * ), U2( LDU2, * ),
     $                   Z( LDZ, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOB     CHARACTER*1
          Specifies the computation to be performed, as follows:
          = 'E':  compute the eigenvalues only; Z and T will not
                  necessarily be put into the forms in (2);
          = 'T':  put Z and T into the forms in (2), and return the
                  eigenvalues in ALPHAR, ALPHAI and BETA.

  COMPQ   CHARACTER*1
          Specifies whether to compute the orthogonal transformation
          matrix Q as follows:
          = 'N':  Q is not computed;
          = 'I':  the array Q is initialized internally to the unit
                  matrix, and the orthogonal matrix Q is returned.

  COMPU   CHARACTER*1
          Specifies whether to compute the orthogonal symplectic
          transformation matrix U as follows:
          = 'N':  U is not computed;
          = 'I':  the array U is initialized internally to the unit
                  matrix, and the orthogonal matrix U is returned;
          = 'U':  the arrays U1 and U2 contain the corresponding
                  submatrices of an orthogonal symplectic matrix U0
                  on entry, and the updated submatrices U1 and U2
                  of the matrix product U0*U are returned, where U
                  is the product of the orthogonal symplectic
                  transformations that are applied to the pencil
                  aS - bT to reduce Z and T to the forms in (2), for
                  COMPU = 'I'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil aS - bT.  N &gt;= 0, even.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
          On entry, the leading N-by-N part of this array must
          contain the matrix Z.
          On exit, if JOB = 'T', the leading N-by-N part of this
          array contains the matrix Zout; otherwise, it contains the
          matrix Z just before the application of the periodic QZ
          algorithm. The entries in the rows N/2+1 to N and the
          first N/2 columns are unchanged.

  LDZ     INTEGER
          The leading dimension of the array Z.  LDZ &gt;= MAX(1, N).

  B       (input/output) DOUBLE PRECISION array, dimension
                         (LDB, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix B.
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix Bout; otherwise, it contains the
          matrix B just before the application of the periodic QZ
          algorithm.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= MAX(1, N/2).

  FG      (input/output) DOUBLE PRECISION array, dimension
                         (LDFG, N/2+1)
          On entry, the leading N/2-by-N/2 strictly lower triangular
          part of this array must contain the strictly lower
          triangular part of the skew-symmetric matrix G, and the
          N/2-by-N/2 strictly upper triangular part of the submatrix
          in the columns 2 to N/2+1 of this array must contain the
          strictly upper triangular part of the skew-symmetric
          matrix F.
          On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
          upper triangular part of the submatrix in the columns 2 to
          N/2+1 of this array contains the strictly upper triangular
          part of the skew-symmetric matrix Fout.
          If JOB = 'E', the leading N/2-by-N/2 strictly upper
          triangular part of the submatrix in the columns 2 to N/2+1
          of this array contains the strictly upper triangular part
          of the skew-symmetric matrix F just before the application
          of the QZ algorithm.
          The entries on the diagonal and the first superdiagonal of
          this array are not referenced, but are assumed to be zero.
          Moreover, the diagonal and the first subdiagonal of this
          array on exit coincide to the corresponding diagonals of
          this array on entry.

  LDFG    INTEGER
          The leading dimension of the array FG.
          LDFG &gt;= MAX(1, N/2).

  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
          On exit, if COMPQ = 'I', the leading N-by-N part of this
          array contains the orthogonal transformation matrix Q.
          On exit, if COMPQ = 'N', the leading N-by-N part of this
          array contains the orthogonal matrix Q1, such that

                   (  Z11  Z12  )
            Z*Q1 = (            ),
                   (   0   Z22  )

          where Z11 and Z22' are upper triangular (the first step
          of the algorithm).

  LDQ     INTEGER
          The leading dimension of the array Q.  LDQ &gt;= MAX(1, N).

  U1      (input/output) DOUBLE PRECISION array, dimension
                         (LDU1, N/2)
          On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
          of this array must contain the upper left block of a
          given matrix U0, and on exit, the leading N/2-by-N/2 part
          of this array contains the updated upper left block U1 of
          the product of the input matrix U0 and the transformation
          matrix U used to transform the matrices Z and T.
          On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
          of this array contains the upper left block U1 of the
          orthogonal symplectic transformation matrix U.
          If COMPU = 'N' this array is not referenced.

  LDU1    INTEGER
          The leading dimension of the array U1.
          LDU1 &gt;= 1,           if COMPU = 'N';
          LDU1 &gt;= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.

  U2      (input/output) DOUBLE PRECISION array, dimension
                         (LDU2, N/2)
          On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
          of this array must contain the upper right block of a
          given matrix U0, and on exit, the leading N/2-by-N/2 part
          of this array contains the updated upper right block U2 of
          the product of the input matrix U0 and the transformation
          matrix U used to transform the matrices Z and T.
          On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
          of this array contains the upper right block U2 of the
          orthogonal symplectic transformation matrix U.
          If COMPU = 'N' this array is not referenced.

  LDU2    INTEGER
          The leading dimension of the array U2.
          LDU2 &gt;= 1,           if COMPU = 'N';
          LDU2 &gt;= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N/2)
          The real parts of each scalar alpha defining an eigenvalue
          of the pencil aS - bT.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N/2)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of the pencil aS - bT.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
          positive, then the j-th and (j+1)-st eigenvalues are a
          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).

  BETA    (output) DOUBLE PRECISION array, dimension (N/2)
          The scalars beta that define the eigenvalues of the pencil
          aS - bT.
          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
          beta = BETA(j) represent the j-th eigenvalue of the pencil
          aS - bT, in the form lambda = alpha/beta. Since lambda may
          overflow, the ratios should not, in general, be computed.
          Due to the skew-Hamiltonian/skew-Hamiltonian structure of
          the pencil, every eigenvalue occurs twice and thus it has
          only to be saved once in ALPHAR, ALPHAI and BETA.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (LIWORK)
          On exit, if INFO = 3, IWORK(1) contains the number of
          (pairs of) possibly inaccurate eigenvalues, q &lt;= N/2, and
          IWORK(2), ..., IWORK(q+1) indicate their indices.
          Specifically, a positive value is an index of a real or
          purely imaginary eigenvalue, corresponding to a 1-by-1
          block, while the absolute value of a negative entry in
          IWORK is an index to the first eigenvalue in a pair of
          consecutively stored eigenvalues, corresponding to a
          2-by-2 block. A 2-by-2 block may have two complex, two
          real, two purely imaginary, or one real and one purely
          imaginary eigenvalue.
          For i = q+2, ..., 2*q+1, IWORK(i) contains a pointer to
          the starting location in DWORK of the i-th triplet of
          1-by-1 blocks, if IWORK(i-q) &gt; 0, or 2-by-2 blocks,
          if IWORK(i-q) &lt; 0, defining unreliable eigenvalues.
          IWORK(2*q+2) contains the number of the 1-by-1 blocks, and
          IWORK(2*q+3) contains the number of the 2-by-2 blocks,
          corresponding to unreliable eigenvalues. IWORK(2*q+4)
          contains the total number t of the 2-by-2 blocks.
          If INFO = 0, then q = 0, therefore IWORK(1) = 0.

  LIWORK  INTEGER
          The dimension of the array IWORK.  LIWORK &gt;= N+9.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
          optimal LDWORK, and DWORK(2), ..., DWORK(4) contain the
          Frobenius norms of the factors of the formal matrix
          product used by the algorithm. In addition, DWORK(5), ...,
          DWORK(4+3*s) contain the s triplet values corresponding
          to the 1-by-1 blocks. Their eigenvalues are real or purely
          imaginary. Such an eigenvalue is obtained as a1/a2/a3,
          where a1, ..., a3 are the corresponding triplet values.
          Moreover, DWORK(5+3*s), ..., DWORK(4+3*s+12*t) contain the
          t groups of triplet 2-by-2 matrices corresponding to the
          2-by-2 blocks. Their eigenvalue pairs are either complex,
          or placed on the real and imaginary axes. Such an
          eigenvalue pair is the spectrum of the matrix product
          A1*inv(A2)*inv(A3), where A1, ..., A3 define the
          corresponding 2-by-2 matrix triplet.
          On exit, if INFO = -23, DWORK(1) returns the minimum value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          If JOB = 'E' and COMPQ = 'N' and COMPU = 'N',
                LDWORK &gt;= 3/4*N**2+MAX(3*N, 27);
          else, LDWORK &gt;= 3/2*N**2+MAX(3*N, 27).
          For good performance LDWORK should generally be larger.

          If LDWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message related to LDWORK is issued by
          XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          &lt; 0: if INFO = -i, the i-th argument had an illegal value;
          = 1: problem during computation of the eigenvalues;
          = 2: periodic QZ algorithm did not converge in the SLICOT
               Library subroutine MB03BD;
          = 3: some eigenvalues might be inaccurate, and details can
               be found in IWORK and DWORK. This is a warning.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses Givens rotations and Householder reflections to
  annihilate elements in Z and T such that Z is in a special block
  triangular form and T is in skew-Hamiltonian Hessenberg form:

      (  Z11  Z12  )      (  B1  F1  )
  Z = (            ), T = (          ),
      (   0   Z22  )      (   0  B1' )

  with Z11 and Z22' upper triangular and B1 upper Hessenberg.
  Subsequently, the periodic QZ algorithm is applied to the pencil
  aZ22' Z11 - bB1 to determine orthogonal matrices Q1, Q2 and U such
  that U' Z11 Q1, Q2' Z22' U are upper triangular and Q2' B1 Q1 is
  upper quasi-triangular. See also page 35 in [1] for more details.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                                                            3
  The algorithm is numerically backward stable and needs O(N ) real
  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB04ED EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            NMAX
      PARAMETER          ( NMAX = 60 )
      INTEGER            LDB, LDFG, LDQ, LDU1, LDU2, LDWORK, LDZ,
     $                   LIWORK
      PARAMETER          ( LDB = NMAX/2, LDFG = NMAX/2,
     $                     LDQ = NMAX,   LDU1 = NMAX/2, LDU2 = NMAX/2,
     $                     LDWORK = 3*NMAX**2/2 + MAX( NMAX, 24 ) + 3,
     $                     LDZ = NMAX, LIWORK = NMAX + 9 )
*
*     .. Local Scalars ..
      CHARACTER          COMPQ, COMPU, JOB
      INTEGER            I, INFO, J, N
*
*     .. Local Arrays ..
      INTEGER            IWORK( LIWORK )
      DOUBLE PRECISION   ALPHAI( NMAX/2 ),   ALPHAR( NMAX/2 ),
     $                   B( LDB, NMAX/2 ),     BETA( NMAX/2 ),
     $                   DWORK( LDWORK ),  FG( LDFG, NMAX/2+1 ),
     $                   Q( LDQ, NMAX ),   U1( LDU1, NMAX/2 ),
     $                   U2( LDU2, NMAX/2 ), Z( LDZ, NMAX )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           MB04ED
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MOD
*
*     .. Executable statements ..
*
      WRITE( NOUT, FMT = 99999 )
*
*     Skip first line in data file.
*
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) JOB, COMPQ, COMPU, N
      READ( NIN, FMT = * ) ( (  Z( I, J ), J = 1, N ),     I = 1, N )
      READ( NIN, FMT = * ) ( (  B( I, J ), J = 1, N/2 ),   I = 1, N/2 )
      READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, N/2+1 ), I = 1, N/2 )
      IF( LSAME( COMPU, 'U' ) ) THEN
         READ( NIN, FMT = * ) ( ( U1( I, J ), J = 1, N/2 ), I = 1, N/2 )
         READ( NIN, FMT = * ) ( ( U2( I, J ), J = 1, N/2 ), I = 1, N/2 )
      END IF
      IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
*
*        Test of MB04ED.
*
         CALL MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG, Q,
     $                LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI, BETA,
     $                IWORK, LIWORK, DWORK, LDWORK, INFO )
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE
            WRITE( NOUT, FMT = 99996 )
            DO 10 I = 1, N
               WRITE( NOUT, FMT = 99995 ) ( Z(I,J), J = 1, N )
   10       CONTINUE
            WRITE( NOUT, FMT = 99994 )
            DO 20 I = 1, N/2
               WRITE( NOUT, FMT = 99995 ) ( B(I,J), J = 1, N/2 )
   20       CONTINUE
            WRITE( NOUT, FMT = 99993 )
            DO 30 I = 1, N/2
               WRITE( NOUT, FMT = 99995 ) ( FG(I,J), J = 1, N/2+1 )
   30       CONTINUE
            WRITE( NOUT, FMT = 99992 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAR(I), I = 1, N/2 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAI(I), I = 1, N/2 )
            WRITE( NOUT, FMT = 99995 ) (   BETA(I), I = 1, N/2 )
            WRITE( NOUT, FMT = 99991 )
            DO 40 I = 1, N
               WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, N )
   40       CONTINUE
            IF ( .NOT.LSAME( COMPU, 'N' ) ) THEN
               WRITE( NOUT, FMT = 99990 )
               DO 50 I = 1, N/2
                  WRITE( NOUT, FMT = 99995 ) ( U1( I, J ), J = 1, N/2 )
   50          CONTINUE
               WRITE( NOUT, FMT = 99989 )
               DO 60 I = 1, N/2
                  WRITE( NOUT, FMT = 99995 ) ( U2( I, J ), J = 1, N/2 )
   60          CONTINUE
            END IF
         END IF
      END IF
      STOP
99999 FORMAT ( 'MB04ED EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT ( 'INFO on exit from MB04ED = ', I2 )
99996 FORMAT (/' The transformed matrix Z is' )
99995 FORMAT ( 60( 1X, F8.4 ) )
99994 FORMAT (/' The transformed matrix B is' )
99993 FORMAT (/' The transformed matrix FG is' )
99992 FORMAT (/' The real, imaginary, and beta parts of eigenvalues are'
     $       )
99991 FORMAT (/' The matrix Q is ' )
99990 FORMAT (/' The upper left block of the matrix U is ' )
99989 FORMAT (/' The upper right block of the matrix U is ' )
      END
 
 
</PRE>
<B>Program Data</B>
<PRE>
MB04ED EXAMPLE PROGRAM DATA
   T   I   I   8
   0.0949    3.3613   -4.7663   -0.5534    0.6408   -3.2793    3.4253    2.9654
   0.1138   -1.5903    2.1837   -4.1648   -4.3775   -1.7454    0.1744    2.3262
   2.7505    4.4048    4.4183    3.0478    2.7728    2.3048   -0.6451   -1.2045
   3.6091   -4.1716    3.4461    3.6880   -0.0985    3.8458    0.2528   -1.3859
   0.4352   -3.2829    3.7246    0.4794   -0.3690   -1.5562   -3.4817   -2.2902
   1.3080   -3.9881   -3.5497    3.5020    2.2582    4.4764   -4.4080   -1.6818
   1.1308   -1.5087    2.4730    2.1553   -1.7129   -4.8669   -2.4102    4.2274
   4.7933   -4.3671   -0.0473   -2.0092    1.2439   -4.7385    3.4242   -0.2764
   2.0936    1.5510    4.5974    2.5127
   2.5469   -3.3739   -1.5961   -2.4490
  -2.2397   -3.8100    0.8527    0.0596
   1.7970   -0.0164   -2.7619    1.9908
   1.0000    2.0000   -4.0500    1.3353    0.2899
  -0.4318    2.0000    2.0000   -2.9860   -0.0160
   1.0241    0.9469    2.0000    2.0000    1.3303
   0.0946   -0.1272   -4.4003    2.0000    2.0000
 
</PRE>
<B>Program Results</B>
<PRE>
MB04ED EXAMPLE PROGRAM RESULTS

 The transformed matrix Z is
  -2.5678  -2.9888   0.4304  -2.8719   2.7331   1.3072   1.7565   2.8246
   0.0000  -3.8520  -6.0992   6.2935  -3.0386  -5.5317  -1.2189   3.9973
   0.0000   0.0000   4.4560   4.4602   0.6080  -4.4326   3.7959  -0.6297
   0.0000   0.0000   0.0000   7.0155   1.5557   2.1441   3.6649  -2.3864
   0.4352  -3.2829   3.7246   0.4794  -5.3205   0.0000   0.0000   0.0000
   1.3080  -3.9881  -3.5497   3.5020   2.2466   6.9633   0.0000   0.0000
   1.1308  -1.5087   2.4730   2.1553  -1.7204  -0.8164   8.1468   0.0000
   4.7933  -4.3671  -0.0473  -2.0092  -3.9547   0.2664   1.0382   5.5977

 The transformed matrix B is
   3.8629  -1.3266   0.1253   2.1882
   0.0000   3.7258  -3.5913  -2.4583
   0.0000  -3.6551  -2.5063  -0.8378
   0.0000   0.0000   0.0000  -6.7384

 The transformed matrix FG is
   1.0000   2.0000  -0.7448  -1.2359  -1.3653
   0.0158   2.0000   2.0000   3.4030   3.2344
  -1.1665   2.5791   2.0000   2.0000  -0.4096
   3.3823  -1.2344   3.9016   2.0000   2.0000

 The real, imaginary, and beta parts of eigenvalues are
   1.1310  -0.0697  -0.0697  -0.6864
   0.0000   0.6035  -0.6035   0.0000
   4.0000   4.0000   4.0000   4.0000

 The matrix Q is 
  -0.6042  -0.4139  -0.4742   0.1400  -0.2947   0.3462  -0.0980   0.0534
  -0.3706   0.1367   0.4442  -0.1381  -0.1210   0.2913   0.7248  -0.0524
   0.1325  -0.2735  -0.0515  -0.5084  -0.3163  -0.2855   0.1638   0.6619
   0.2373   0.5514  -0.4988   0.3373  -0.3852  -0.0007   0.3329   0.1339
   0.4777  -0.4517   0.2739   0.5172  -0.0775   0.3874   0.1088   0.2395
  -0.0116  -0.4372  -0.1843   0.2474   0.1236  -0.6052   0.4772  -0.3228
   0.1237  -0.0310  -0.4300  -0.2090   0.7209   0.3408   0.2898   0.1883
   0.4245  -0.1871  -0.1803  -0.4655  -0.3304   0.2849   0.0623  -0.5843

 The upper left block of the matrix U is 
   0.0154  -0.5058  -0.5272   0.6826
   0.4829  -0.1519  -0.2921  -0.3491
   0.4981   0.1532   0.1019   0.1810
  -0.0188   0.6270  -0.5260   0.0587

 The upper right block of the matrix U is 
   0.0000   0.0000   0.0000   0.0000
   0.3179  -0.4312  -0.1802  -0.4659
   0.5644   0.0873   0.4480   0.3979
  -0.3137  -0.3330   0.3413   0.0239
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>