1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
<HTML>
<HEAD><TITLE>MB04ED - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04ED">MB04ED</A></H2>
<H3>
Eigenvalues and orthogonal decomposition of a real skew-Hamiltonian/skew-Hamiltonian pencil in factored form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/
skew-Hamiltonian pencil aS - bT with
( B F ) ( 0 I )
S = J Z' J' Z and T = ( ), where J = ( ). (1)
( G B' ) ( -I 0 )
Optionally, if JOB = 'T', the pencil aS - bT will be transformed
to the structured Schur form: an orthogonal transformation matrix
Q and an orthogonal symplectic transformation matrix U are
computed, such that
( Z11 Z12 )
U' Z Q = ( ) = Zout, and
( 0 Z22 )
(2)
( Bout Fout )
J Q' J' T Q = ( ),
( 0 Bout' )
where Z11 and Z22' are upper triangular and Bout is upper quasi-
triangular. The notation M' denotes the transpose of the matrix M.
Optionally, if COMPQ = 'I', the orthogonal transformation matrix Q
will be computed.
Optionally, if COMPU = 'I' or COMPU = 'U', the orthogonal
symplectic transformation matrix
( U1 U2 )
U = ( )
( -U2 U1 )
will be computed.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG,
$ Q, LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI,
$ BETA, IWORK, LIWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ, COMPU, JOB
INTEGER INFO, LDB, LDFG, LDQ, LDU1, LDU2, LDWORK, LDZ,
$ LIWORK, N
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), B( LDB, * ),
$ BETA( * ), DWORK( * ), FG( LDFG, * ),
$ Q( LDQ, * ), U1( LDU1, * ), U2( LDU2, * ),
$ Z( LDZ, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies the computation to be performed, as follows:
= 'E': compute the eigenvalues only; Z and T will not
necessarily be put into the forms in (2);
= 'T': put Z and T into the forms in (2), and return the
eigenvalues in ALPHAR, ALPHAI and BETA.
COMPQ CHARACTER*1
Specifies whether to compute the orthogonal transformation
matrix Q as follows:
= 'N': Q is not computed;
= 'I': the array Q is initialized internally to the unit
matrix, and the orthogonal matrix Q is returned.
COMPU CHARACTER*1
Specifies whether to compute the orthogonal symplectic
transformation matrix U as follows:
= 'N': U is not computed;
= 'I': the array U is initialized internally to the unit
matrix, and the orthogonal matrix U is returned;
= 'U': the arrays U1 and U2 contain the corresponding
submatrices of an orthogonal symplectic matrix U0
on entry, and the updated submatrices U1 and U2
of the matrix product U0*U are returned, where U
is the product of the orthogonal symplectic
transformations that are applied to the pencil
aS - bT to reduce Z and T to the forms in (2), for
COMPU = 'I'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the pencil aS - bT. N >= 0, even.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, the leading N-by-N part of this array must
contain the matrix Z.
On exit, if JOB = 'T', the leading N-by-N part of this
array contains the matrix Zout; otherwise, it contains the
matrix Z just before the application of the periodic QZ
algorithm. The entries in the rows N/2+1 to N and the
first N/2 columns are unchanged.
LDZ INTEGER
The leading dimension of the array Z. LDZ >= MAX(1, N).
B (input/output) DOUBLE PRECISION array, dimension
(LDB, N/2)
On entry, the leading N/2-by-N/2 part of this array must
contain the matrix B.
On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
array contains the matrix Bout; otherwise, it contains the
matrix B just before the application of the periodic QZ
algorithm.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1, N/2).
FG (input/output) DOUBLE PRECISION array, dimension
(LDFG, N/2+1)
On entry, the leading N/2-by-N/2 strictly lower triangular
part of this array must contain the strictly lower
triangular part of the skew-symmetric matrix G, and the
N/2-by-N/2 strictly upper triangular part of the submatrix
in the columns 2 to N/2+1 of this array must contain the
strictly upper triangular part of the skew-symmetric
matrix F.
On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
upper triangular part of the submatrix in the columns 2 to
N/2+1 of this array contains the strictly upper triangular
part of the skew-symmetric matrix Fout.
If JOB = 'E', the leading N/2-by-N/2 strictly upper
triangular part of the submatrix in the columns 2 to N/2+1
of this array contains the strictly upper triangular part
of the skew-symmetric matrix F just before the application
of the QZ algorithm.
The entries on the diagonal and the first superdiagonal of
this array are not referenced, but are assumed to be zero.
Moreover, the diagonal and the first subdiagonal of this
array on exit coincide to the corresponding diagonals of
this array on entry.
LDFG INTEGER
The leading dimension of the array FG.
LDFG >= MAX(1, N/2).
Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
On exit, if COMPQ = 'I', the leading N-by-N part of this
array contains the orthogonal transformation matrix Q.
On exit, if COMPQ = 'N', the leading N-by-N part of this
array contains the orthogonal matrix Q1, such that
( Z11 Z12 )
Z*Q1 = ( ),
( 0 Z22 )
where Z11 and Z22' are upper triangular (the first step
of the algorithm).
LDQ INTEGER
The leading dimension of the array Q. LDQ >= MAX(1, N).
U1 (input/output) DOUBLE PRECISION array, dimension
(LDU1, N/2)
On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
of this array must contain the upper left block of a
given matrix U0, and on exit, the leading N/2-by-N/2 part
of this array contains the updated upper left block U1 of
the product of the input matrix U0 and the transformation
matrix U used to transform the matrices Z and T.
On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
of this array contains the upper left block U1 of the
orthogonal symplectic transformation matrix U.
If COMPU = 'N' this array is not referenced.
LDU1 INTEGER
The leading dimension of the array U1.
LDU1 >= 1, if COMPU = 'N';
LDU1 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.
U2 (input/output) DOUBLE PRECISION array, dimension
(LDU2, N/2)
On entry, if COMPU = 'U', then the leading N/2-by-N/2 part
of this array must contain the upper right block of a
given matrix U0, and on exit, the leading N/2-by-N/2 part
of this array contains the updated upper right block U2 of
the product of the input matrix U0 and the transformation
matrix U used to transform the matrices Z and T.
On exit, if COMPU = 'I', then the leading N/2-by-N/2 part
of this array contains the upper right block U2 of the
orthogonal symplectic transformation matrix U.
If COMPU = 'N' this array is not referenced.
LDU2 INTEGER
The leading dimension of the array U2.
LDU2 >= 1, if COMPU = 'N';
LDU2 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'.
ALPHAR (output) DOUBLE PRECISION array, dimension (N/2)
The real parts of each scalar alpha defining an eigenvalue
of the pencil aS - bT.
ALPHAI (output) DOUBLE PRECISION array, dimension (N/2)
The imaginary parts of each scalar alpha defining an
eigenvalue of the pencil aS - bT.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N/2)
The scalars beta that define the eigenvalues of the pencil
aS - bT.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the pencil
aS - bT, in the form lambda = alpha/beta. Since lambda may
overflow, the ratios should not, in general, be computed.
Due to the skew-Hamiltonian/skew-Hamiltonian structure of
the pencil, every eigenvalue occurs twice and thus it has
only to be saved once in ALPHAR, ALPHAI and BETA.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
On exit, if INFO = 3, IWORK(1) contains the number of
(pairs of) possibly inaccurate eigenvalues, q <= N/2, and
IWORK(2), ..., IWORK(q+1) indicate their indices.
Specifically, a positive value is an index of a real or
purely imaginary eigenvalue, corresponding to a 1-by-1
block, while the absolute value of a negative entry in
IWORK is an index to the first eigenvalue in a pair of
consecutively stored eigenvalues, corresponding to a
2-by-2 block. A 2-by-2 block may have two complex, two
real, two purely imaginary, or one real and one purely
imaginary eigenvalue.
For i = q+2, ..., 2*q+1, IWORK(i) contains a pointer to
the starting location in DWORK of the i-th triplet of
1-by-1 blocks, if IWORK(i-q) > 0, or 2-by-2 blocks,
if IWORK(i-q) < 0, defining unreliable eigenvalues.
IWORK(2*q+2) contains the number of the 1-by-1 blocks, and
IWORK(2*q+3) contains the number of the 2-by-2 blocks,
corresponding to unreliable eigenvalues. IWORK(2*q+4)
contains the total number t of the 2-by-2 blocks.
If INFO = 0, then q = 0, therefore IWORK(1) = 0.
LIWORK INTEGER
The dimension of the array IWORK. LIWORK >= N+9.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
optimal LDWORK, and DWORK(2), ..., DWORK(4) contain the
Frobenius norms of the factors of the formal matrix
product used by the algorithm. In addition, DWORK(5), ...,
DWORK(4+3*s) contain the s triplet values corresponding
to the 1-by-1 blocks. Their eigenvalues are real or purely
imaginary. Such an eigenvalue is obtained as a1/a2/a3,
where a1, ..., a3 are the corresponding triplet values.
Moreover, DWORK(5+3*s), ..., DWORK(4+3*s+12*t) contain the
t groups of triplet 2-by-2 matrices corresponding to the
2-by-2 blocks. Their eigenvalue pairs are either complex,
or placed on the real and imaginary axes. Such an
eigenvalue pair is the spectrum of the matrix product
A1*inv(A2)*inv(A3), where A1, ..., A3 define the
corresponding 2-by-2 matrix triplet.
On exit, if INFO = -23, DWORK(1) returns the minimum value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
If JOB = 'E' and COMPQ = 'N' and COMPU = 'N',
LDWORK >= 3/4*N**2+MAX(3*N, 27);
else, LDWORK >= 3/2*N**2+MAX(3*N, 27).
For good performance LDWORK should generally be larger.
If LDWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the DWORK
array, returns this value as the first entry of the DWORK
array, and no error message related to LDWORK is issued by
XERBLA.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
< 0: if INFO = -i, the i-th argument had an illegal value;
= 1: problem during computation of the eigenvalues;
= 2: periodic QZ algorithm did not converge in the SLICOT
Library subroutine MB03BD;
= 3: some eigenvalues might be inaccurate, and details can
be found in IWORK and DWORK. This is a warning.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm uses Givens rotations and Householder reflections to
annihilate elements in Z and T such that Z is in a special block
triangular form and T is in skew-Hamiltonian Hessenberg form:
( Z11 Z12 ) ( B1 F1 )
Z = ( ), T = ( ),
( 0 Z22 ) ( 0 B1' )
with Z11 and Z22' upper triangular and B1 upper Hessenberg.
Subsequently, the periodic QZ algorithm is applied to the pencil
aZ22' Z11 - bB1 to determine orthogonal matrices Q1, Q2 and U such
that U' Z11 Q1, Q2' Z22' U are upper triangular and Q2' B1 Q1 is
upper quasi-triangular. See also page 35 in [1] for more details.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
Numerical Computation of Deflating Subspaces of Embedded
Hamiltonian Pencils.
Tech. Rep. SFB393/99-15, Technical University Chemnitz,
Germany, June 1999.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm is numerically backward stable and needs O(N ) real
floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB04ED EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 60 )
INTEGER LDB, LDFG, LDQ, LDU1, LDU2, LDWORK, LDZ,
$ LIWORK
PARAMETER ( LDB = NMAX/2, LDFG = NMAX/2,
$ LDQ = NMAX, LDU1 = NMAX/2, LDU2 = NMAX/2,
$ LDWORK = 3*NMAX**2/2 + MAX( NMAX, 24 ) + 3,
$ LDZ = NMAX, LIWORK = NMAX + 9 )
*
* .. Local Scalars ..
CHARACTER COMPQ, COMPU, JOB
INTEGER I, INFO, J, N
*
* .. Local Arrays ..
INTEGER IWORK( LIWORK )
DOUBLE PRECISION ALPHAI( NMAX/2 ), ALPHAR( NMAX/2 ),
$ B( LDB, NMAX/2 ), BETA( NMAX/2 ),
$ DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ),
$ Q( LDQ, NMAX ), U1( LDU1, NMAX/2 ),
$ U2( LDU2, NMAX/2 ), Z( LDZ, NMAX )
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
*
* .. External Subroutines ..
EXTERNAL MB04ED
*
* .. Intrinsic Functions ..
INTRINSIC MAX, MOD
*
* .. Executable statements ..
*
WRITE( NOUT, FMT = 99999 )
*
* Skip first line in data file.
*
READ( NIN, FMT = * )
READ( NIN, FMT = * ) JOB, COMPQ, COMPU, N
READ( NIN, FMT = * ) ( ( Z( I, J ), J = 1, N ), I = 1, N )
READ( NIN, FMT = * ) ( ( B( I, J ), J = 1, N/2 ), I = 1, N/2 )
READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, N/2+1 ), I = 1, N/2 )
IF( LSAME( COMPU, 'U' ) ) THEN
READ( NIN, FMT = * ) ( ( U1( I, J ), J = 1, N/2 ), I = 1, N/2 )
READ( NIN, FMT = * ) ( ( U2( I, J ), J = 1, N/2 ), I = 1, N/2 )
END IF
IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN
WRITE( NOUT, FMT = 99998 ) N
ELSE
*
* Test of MB04ED.
*
CALL MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG, Q,
$ LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI, BETA,
$ IWORK, LIWORK, DWORK, LDWORK, INFO )
IF( INFO.NE.0 ) THEN
WRITE( NOUT, FMT = 99997 ) INFO
ELSE
WRITE( NOUT, FMT = 99996 )
DO 10 I = 1, N
WRITE( NOUT, FMT = 99995 ) ( Z(I,J), J = 1, N )
10 CONTINUE
WRITE( NOUT, FMT = 99994 )
DO 20 I = 1, N/2
WRITE( NOUT, FMT = 99995 ) ( B(I,J), J = 1, N/2 )
20 CONTINUE
WRITE( NOUT, FMT = 99993 )
DO 30 I = 1, N/2
WRITE( NOUT, FMT = 99995 ) ( FG(I,J), J = 1, N/2+1 )
30 CONTINUE
WRITE( NOUT, FMT = 99992 )
WRITE( NOUT, FMT = 99995 ) ( ALPHAR(I), I = 1, N/2 )
WRITE( NOUT, FMT = 99995 ) ( ALPHAI(I), I = 1, N/2 )
WRITE( NOUT, FMT = 99995 ) ( BETA(I), I = 1, N/2 )
WRITE( NOUT, FMT = 99991 )
DO 40 I = 1, N
WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, N )
40 CONTINUE
IF ( .NOT.LSAME( COMPU, 'N' ) ) THEN
WRITE( NOUT, FMT = 99990 )
DO 50 I = 1, N/2
WRITE( NOUT, FMT = 99995 ) ( U1( I, J ), J = 1, N/2 )
50 CONTINUE
WRITE( NOUT, FMT = 99989 )
DO 60 I = 1, N/2
WRITE( NOUT, FMT = 99995 ) ( U2( I, J ), J = 1, N/2 )
60 CONTINUE
END IF
END IF
END IF
STOP
99999 FORMAT ( 'MB04ED EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT ( 'INFO on exit from MB04ED = ', I2 )
99996 FORMAT (/' The transformed matrix Z is' )
99995 FORMAT ( 60( 1X, F8.4 ) )
99994 FORMAT (/' The transformed matrix B is' )
99993 FORMAT (/' The transformed matrix FG is' )
99992 FORMAT (/' The real, imaginary, and beta parts of eigenvalues are'
$ )
99991 FORMAT (/' The matrix Q is ' )
99990 FORMAT (/' The upper left block of the matrix U is ' )
99989 FORMAT (/' The upper right block of the matrix U is ' )
END
</PRE>
<B>Program Data</B>
<PRE>
MB04ED EXAMPLE PROGRAM DATA
T I I 8
0.0949 3.3613 -4.7663 -0.5534 0.6408 -3.2793 3.4253 2.9654
0.1138 -1.5903 2.1837 -4.1648 -4.3775 -1.7454 0.1744 2.3262
2.7505 4.4048 4.4183 3.0478 2.7728 2.3048 -0.6451 -1.2045
3.6091 -4.1716 3.4461 3.6880 -0.0985 3.8458 0.2528 -1.3859
0.4352 -3.2829 3.7246 0.4794 -0.3690 -1.5562 -3.4817 -2.2902
1.3080 -3.9881 -3.5497 3.5020 2.2582 4.4764 -4.4080 -1.6818
1.1308 -1.5087 2.4730 2.1553 -1.7129 -4.8669 -2.4102 4.2274
4.7933 -4.3671 -0.0473 -2.0092 1.2439 -4.7385 3.4242 -0.2764
2.0936 1.5510 4.5974 2.5127
2.5469 -3.3739 -1.5961 -2.4490
-2.2397 -3.8100 0.8527 0.0596
1.7970 -0.0164 -2.7619 1.9908
1.0000 2.0000 -4.0500 1.3353 0.2899
-0.4318 2.0000 2.0000 -2.9860 -0.0160
1.0241 0.9469 2.0000 2.0000 1.3303
0.0946 -0.1272 -4.4003 2.0000 2.0000
</PRE>
<B>Program Results</B>
<PRE>
MB04ED EXAMPLE PROGRAM RESULTS
The transformed matrix Z is
-2.5678 -2.9888 0.4304 -2.8719 2.7331 1.3072 1.7565 2.8246
0.0000 -3.8520 -6.0992 6.2935 -3.0386 -5.5317 -1.2189 3.9973
0.0000 0.0000 4.4560 4.4602 0.6080 -4.4326 3.7959 -0.6297
0.0000 0.0000 0.0000 7.0155 1.5557 2.1441 3.6649 -2.3864
0.4352 -3.2829 3.7246 0.4794 -5.3205 0.0000 0.0000 0.0000
1.3080 -3.9881 -3.5497 3.5020 2.2466 6.9633 0.0000 0.0000
1.1308 -1.5087 2.4730 2.1553 -1.7204 -0.8164 8.1468 0.0000
4.7933 -4.3671 -0.0473 -2.0092 -3.9547 0.2664 1.0382 5.5977
The transformed matrix B is
3.8629 -1.3266 0.1253 2.1882
0.0000 3.7258 -3.5913 -2.4583
0.0000 -3.6551 -2.5063 -0.8378
0.0000 0.0000 0.0000 -6.7384
The transformed matrix FG is
1.0000 2.0000 -0.7448 -1.2359 -1.3653
0.0158 2.0000 2.0000 3.4030 3.2344
-1.1665 2.5791 2.0000 2.0000 -0.4096
3.3823 -1.2344 3.9016 2.0000 2.0000
The real, imaginary, and beta parts of eigenvalues are
1.1310 -0.0697 -0.0697 -0.6864
0.0000 0.6035 -0.6035 0.0000
4.0000 4.0000 4.0000 4.0000
The matrix Q is
-0.6042 -0.4139 -0.4742 0.1400 -0.2947 0.3462 -0.0980 0.0534
-0.3706 0.1367 0.4442 -0.1381 -0.1210 0.2913 0.7248 -0.0524
0.1325 -0.2735 -0.0515 -0.5084 -0.3163 -0.2855 0.1638 0.6619
0.2373 0.5514 -0.4988 0.3373 -0.3852 -0.0007 0.3329 0.1339
0.4777 -0.4517 0.2739 0.5172 -0.0775 0.3874 0.1088 0.2395
-0.0116 -0.4372 -0.1843 0.2474 0.1236 -0.6052 0.4772 -0.3228
0.1237 -0.0310 -0.4300 -0.2090 0.7209 0.3408 0.2898 0.1883
0.4245 -0.1871 -0.1803 -0.4655 -0.3304 0.2849 0.0623 -0.5843
The upper left block of the matrix U is
0.0154 -0.5058 -0.5272 0.6826
0.4829 -0.1519 -0.2921 -0.3491
0.4981 0.1532 0.1019 0.1810
-0.0188 0.6270 -0.5260 0.0587
The upper right block of the matrix U is
0.0000 0.0000 0.0000 0.0000
0.3179 -0.4312 -0.1802 -0.4659
0.5644 0.0873 0.4480 0.3979
-0.3137 -0.3330 0.3413 0.0239
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|