File: MB04KD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (166 lines) | stat: -rw-r--r-- 5,324 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
<HTML>
<HEAD><TITLE>MB04KD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04KD">MB04KD</A></H2>
<H3>
QR factorization of a special structured block matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To calculate a QR factorization of the first block column and
  apply the orthogonal transformations (from the left) also to the
  second block column of a structured matrix, as follows
                       _
         [ R   0 ]   [ R   C ]
    Q' * [       ] = [       ]
         [ A   B ]   [ 0   D ]
              _
  where R and R are upper triangular. The matrix A can be full or
  upper trapezoidal/triangular. The problem structure is exploited.
  This computation is useful, for instance, in combined measurement
  and time update of one iteration of the Kalman filter (square
  root information filter).

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04KD( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C, LDC,
     $                   TAU, DWORK )
C     .. Scalar Arguments ..
      CHARACTER         UPLO
      INTEGER           LDA, LDB, LDC, LDR, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
     $                  R(LDR,*), TAU(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  UPLO    CHARACTER*1
          Indicates if the matrix A is or not triangular as follows:
          = 'U':  Matrix A is upper trapezoidal/triangular;
          = 'F':  Matrix A is full.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER                 _
          The order of the matrices R and R.  N &gt;= 0.

  M       (input) INTEGER
          The number of columns of the matrices B, C and D.  M &gt;= 0.

  P       (input) INTEGER
          The number of rows of the matrices A, B and D.  P &gt;= 0.

  R       (input/output) DOUBLE PRECISION array, dimension (LDR,N)
          On entry, the leading N-by-N upper triangular part of this
          array must contain the upper triangular matrix R.
          On exit, the leading N-by-N upper triangular part of this
                                                     _
          array contains the upper triangular matrix R.
          The strict lower triangular part of this array is not
          referenced.

  LDR     INTEGER
          The leading dimension of array R.  LDR &gt;= MAX(1,N).

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, if UPLO = 'F', the leading P-by-N part of this
          array must contain the matrix A. If UPLO = 'U', the
          leading MIN(P,N)-by-N part of this array must contain the
          upper trapezoidal (upper triangular if P &gt;= N) matrix A,
          and the elements below the diagonal are not referenced.
          On exit, the leading P-by-N part (upper trapezoidal or
          triangular, if UPLO = 'U') of this array contains the
          trailing components (the vectors v, see Method) of the
          elementary reflectors used in the factorization.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,P).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading P-by-M part of this array must
          contain the matrix B.
          On exit, the leading P-by-M part of this array contains
          the computed matrix D.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,P).

  C       (output) DOUBLE PRECISION array, dimension (LDC,M)
          The leading N-by-M part of this array contains the
          computed matrix C.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,N).

  TAU     (output) DOUBLE PRECISION array, dimension (N)
          The scalar factors of the elementary reflectors used.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (N)

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine uses N Householder transformations exploiting the zero
  pattern of the block matrix.  A Householder matrix has the form

                                  ( 1 ),
     H  = I - tau *u *u',    u  = ( v )
      i          i  i  i      i   (  i)

  where v  is a P-vector, if UPLO = 'F', or an min(i,P)-vector, if
         i
  UPLO = 'U'.  The components of v  are stored in the i-th column
                                  i
  of A, and tau  is stored in TAU(i).
               i

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>