1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
<HTML>
<HEAD><TITLE>MB04LD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04LD">MB04LD</A></H2>
<H3>
LQ factorization of a special structured block matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To calculate an LQ factorization of the first block row and apply
the orthogonal transformations (from the right) also to the second
block row of a structured matrix, as follows
_
[ L A ] [ L 0 ]
[ ]*Q = [ ]
[ 0 B ] [ C D ]
_
where L and L are lower triangular. The matrix A can be full or
lower trapezoidal/triangular. The problem structure is exploited.
This computation is useful, for instance, in combined measurement
and time update of one iteration of the Kalman filter (square
root covariance filter).
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04LD( UPLO, N, M, P, L, LDL, A, LDA, B, LDB, C, LDC,
$ TAU, DWORK )
C .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDB, LDC, LDL, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
$ L(LDL,*), TAU(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
UPLO CHARACTER*1
Indicates if the matrix A is or not triangular as follows:
= 'L': Matrix A is lower trapezoidal/triangular;
= 'F': Matrix A is full.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER _
The order of the matrices L and L. N >= 0.
M (input) INTEGER
The number of columns of the matrices A, B and D. M >= 0.
P (input) INTEGER
The number of rows of the matrices B, C and D. P >= 0.
L (input/output) DOUBLE PRECISION array, dimension (LDL,N)
On entry, the leading N-by-N lower triangular part of this
array must contain the lower triangular matrix L.
On exit, the leading N-by-N lower triangular part of this
_
array contains the lower triangular matrix L.
The strict upper triangular part of this array is not
referenced.
LDL INTEGER
The leading dimension of array L. LDL >= MAX(1,N).
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
On entry, if UPLO = 'F', the leading N-by-M part of this
array must contain the matrix A. If UPLO = 'L', the
leading N-by-MIN(N,M) part of this array must contain the
lower trapezoidal (lower triangular if N <= M) matrix A,
and the elements above the diagonal are not referenced.
On exit, the leading N-by-M part (lower trapezoidal or
triangular, if UPLO = 'L') of this array contains the
trailing components (the vectors v, see Method) of the
elementary reflectors used in the factorization.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading P-by-M part of this array must
contain the matrix B.
On exit, the leading P-by-M part of this array contains
the computed matrix D.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,P).
C (output) DOUBLE PRECISION array, dimension (LDC,N)
The leading P-by-N part of this array contains the
computed matrix C.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
TAU (output) DOUBLE PRECISION array, dimension (N)
The scalar factors of the elementary reflectors used.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (N)
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine uses N Householder transformations exploiting the zero
pattern of the block matrix. A Householder matrix has the form
( 1 ),
H = I - tau *u *u', u = ( v )
i i i i i ( i)
where v is an M-vector, if UPLO = 'F', or an min(i,M)-vector, if
i
UPLO = 'L'. The components of v are stored in the i-th row of A,
i
and tau is stored in TAU(i).
i
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|