1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
<HTML>
<HEAD><TITLE>MB04ND - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04ND">MB04ND</A></H2>
<H3>
RQ factorization of a special structured block matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To calculate an RQ factorization of the first block row and
apply the orthogonal transformations (from the right) also to the
second block row of a structured matrix, as follows
_
[ A R ] [ 0 R ]
[ ] * Q' = [ _ _ ]
[ C B ] [ C B ]
_
where R and R are upper triangular. The matrix A can be full or
upper trapezoidal/triangular. The problem structure is exploited.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04ND( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C, LDC,
$ TAU, DWORK )
C .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDB, LDC, LDR, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
$ R(LDR,*), TAU(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
UPLO CHARACTER*1
Indicates if the matrix A is or not triangular as follows:
= 'U': Matrix A is upper trapezoidal/triangular;
= 'F': Matrix A is full.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER _
The order of the matrices R and R. N >= 0.
M (input) INTEGER
The number of rows of the matrices B and C. M >= 0.
P (input) INTEGER
The number of columns of the matrices A and C. P >= 0.
R (input/output) DOUBLE PRECISION array, dimension (LDR,N)
On entry, the leading N-by-N upper triangular part of this
array must contain the upper triangular matrix R.
On exit, the leading N-by-N upper triangular part of this
_
array contains the upper triangular matrix R.
The strict lower triangular part of this array is not
referenced.
LDR INTEGER
The leading dimension of array R. LDR >= MAX(1,N).
A (input/output) DOUBLE PRECISION array, dimension (LDA,P)
On entry, if UPLO = 'F', the leading N-by-P part of this
array must contain the matrix A. For UPLO = 'U', if
N <= P, the upper triangle of the subarray A(1:N,P-N+1:P)
must contain the N-by-N upper triangular matrix A, and if
N >= P, the elements on and above the (N-P)-th subdiagonal
must contain the N-by-P upper trapezoidal matrix A.
On exit, if UPLO = 'F', the leading N-by-P part of this
array contains the trailing components (the vectors v, see
METHOD) of the elementary reflectors used in the
factorization. If UPLO = 'U', the upper triangle of the
subarray A(1:N,P-N+1:P) (if N <= P), or the elements on
and above the (N-P)-th subdiagonal (if N >= P), contain
the trailing components (the vectors v, see METHOD) of the
elementary reflectors used in the factorization.
The remaining elements are not referenced.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the leading M-by-N part of this array must
contain the matrix B.
On exit, the leading M-by-N part of this array contains
_
the computed matrix B.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,M).
C (input/output) DOUBLE PRECISION array, dimension (LDC,P)
On entry, the leading M-by-P part of this array must
contain the matrix C.
On exit, the leading M-by-P part of this array contains
_
the computed matrix C.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,M).
TAU (output) DOUBLE PRECISION array, dimension (N)
The scalar factors of the elementary reflectors used.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (MAX(N-1,M))
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine uses N Householder transformations exploiting the zero
pattern of the block matrix. A Householder matrix has the form
( 1 )
H = I - tau *u *u', u = ( v ),
i i i i i ( i)
where v is a P-vector, if UPLO = 'F', or a min(N-i+1,P)-vector,
i
if UPLO = 'U'. The components of v are stored in the i-th row
i
of A, and tau is stored in TAU(i), i = N,N-1,...,1.
i
In-line code for applying Householder transformations is used
whenever possible (see MB04NY routine).
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|