File: MB04OD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (271 lines) | stat: -rw-r--r-- 8,981 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
<HTML>
<HEAD><TITLE>MB04OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04OD">MB04OD</A></H2>
<H3>
QR factorization of a special structured block matrix (variant)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To calculate a QR factorization of the first block column and
  apply the orthogonal transformations (from the left) also to the
  second block column of a structured matrix, as follows
                       _   _
         [ R   B ]   [ R   B ]
    Q' * [       ] = [     _ ]
         [ A   C ]   [ 0   C ]
              _
  where R and R are upper triangular. The matrix A can be full or
  upper trapezoidal/triangular. The problem structure is exploited.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04OD( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C, LDC,
     $                   TAU, DWORK )
C     .. Scalar Arguments ..
      CHARACTER         UPLO
      INTEGER           LDA, LDB, LDC, LDR, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
     $                  R(LDR,*), TAU(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  UPLO    CHARACTER*1
          Indicates if the matrix A is or not triangular as follows:
          = 'U':  Matrix A is upper trapezoidal/triangular;
          = 'F':  Matrix A is full.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER                 _
          The order of the matrices R and R.  N &gt;= 0.

  M       (input) INTEGER
          The number of columns of the matrices B and C.  M &gt;= 0.

  P       (input) INTEGER
          The number of rows of the matrices A and C.  P &gt;= 0.

  R       (input/output) DOUBLE PRECISION array, dimension (LDR,N)
          On entry, the leading N-by-N upper triangular part of this
          array must contain the upper triangular matrix R.
          On exit, the leading N-by-N upper triangular part of this
                                                     _
          array contains the upper triangular matrix R.
          The strict lower triangular part of this array is not
          referenced.

  LDR     INTEGER
          The leading dimension of array R.  LDR &gt;= MAX(1,N).

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, if UPLO = 'F', the leading P-by-N part of this
          array must contain the matrix A. If UPLO = 'U', the
          leading MIN(P,N)-by-N part of this array must contain the
          upper trapezoidal (upper triangular if P &gt;= N) matrix A,
          and the elements below the diagonal are not referenced.
          On exit, the leading P-by-N part (upper trapezoidal or
          triangular, if UPLO = 'U') of this array contains the
          trailing components (the vectors v, see Method) of the
          elementary reflectors used in the factorization.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,P).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the matrix B.
          On exit, the leading N-by-M part of this array contains
                              _
          the computed matrix B.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,M)
          On entry, the leading P-by-M part of this array must
          contain the matrix C.
          On exit, the leading P-by-M part of this array contains
                              _
          the computed matrix C.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  TAU     (output) DOUBLE PRECISION array, dimension (N)
          The scalar factors of the elementary reflectors used.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (MAX(N-1,M))

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine uses N Householder transformations exploiting the zero
  pattern of the block matrix.  A Householder matrix has the form

                                  ( 1 )
     H  = I - tau *u *u',    u  = ( v ),
      i          i  i  i      i   (  i)

  where v  is a P-vector, if UPLO = 'F', or a min(i,P)-vector, if
         i
  UPLO = 'U'.  The components of v  are stored in the i-th column
                                  i
  of A, and tau  is stored in TAU(i).
               i
  In-line code for applying Householder transformations is used
  whenever possible (see MB04OY routine).

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB04OD EXAMPLE PROGRAM TEXT.
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER        (ZERO  = 0.0D0 )
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MMAX, NMAX, PMAX
      PARAMETER        ( MMAX = 20, NMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDR
      PARAMETER        ( LDA = PMAX, LDB = NMAX, LDC = PMAX,
     $                   LDR = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( NMAX-1,MMAX ) )
*     .. Local Scalars ..
      CHARACTER*1      UPLO
      INTEGER          I, J, M, N, P
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,MMAX),
     $                 DWORK(LDWORK), R(LDR,NMAX), TAU(NMAX)
*     .. External Subroutines ..
      EXTERNAL         MB04OD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, UPLO
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) M
         ELSE
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99991 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( R(I,J), J = 1,N ), I = 1,N )
               READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,M ), I = 1,P )
*              Compute and apply QR factorization.
               CALL MB04OD( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C,
     $                      LDC,  TAU, DWORK )
*
               WRITE ( NOUT, FMT = 99997 )
               DO 40 I = 1, N
                  DO 20 J = 1, I-1
                     R(I,J) = ZERO
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99996 ) ( R(I,J), J = 1,N )
   40          CONTINUE
               IF ( M.GT.0 ) THEN
                  WRITE ( NOUT, FMT = 99995 )
                  DO 60 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M )
   60             CONTINUE
                  IF ( P.GT.0 ) THEN
                     WRITE ( NOUT, FMT = 99994 )
                     DO 80 I = 1, P
                        WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,M )
   80                CONTINUE
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' MB04OD EXAMPLE PROGRAM RESULTS',/1X)
99997 FORMAT (' The updated matrix R is ')
99996 FORMAT (20(1X,F10.4))
99995 FORMAT (' The updated matrix B is ')
99994 FORMAT (' The updated matrix C is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' P is out of range.',/' P = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 MB04OD EXAMPLE PROGRAM DATA
   3     2     2     F
   3.    2.    1.
   0.    2.    1.
   0.    0.    1.
   2.    3.    1.
   4.    6.    5.
   3.    2.
   1.    3.
   3.    2.
   1.    3.
   3.    2.
</PRE>
<B>Program Results</B>
<PRE>
 MB04OD EXAMPLE PROGRAM RESULTS

 The updated matrix R is 
    -5.3852    -6.6850    -4.6424
     0.0000    -2.8828    -2.0694
     0.0000     0.0000    -1.7793
 The updated matrix B is 
    -4.2710    -3.7139
    -0.1555    -2.1411
    -1.6021     0.9398
 The updated matrix C is 
     0.5850     1.0141
    -2.7974    -3.1162
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>