1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
<HTML>
<HEAD><TITLE>MB04OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04OD">MB04OD</A></H2>
<H3>
QR factorization of a special structured block matrix (variant)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To calculate a QR factorization of the first block column and
apply the orthogonal transformations (from the left) also to the
second block column of a structured matrix, as follows
_ _
[ R B ] [ R B ]
Q' * [ ] = [ _ ]
[ A C ] [ 0 C ]
_
where R and R are upper triangular. The matrix A can be full or
upper trapezoidal/triangular. The problem structure is exploited.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04OD( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C, LDC,
$ TAU, DWORK )
C .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDB, LDC, LDR, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
$ R(LDR,*), TAU(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
UPLO CHARACTER*1
Indicates if the matrix A is or not triangular as follows:
= 'U': Matrix A is upper trapezoidal/triangular;
= 'F': Matrix A is full.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER _
The order of the matrices R and R. N >= 0.
M (input) INTEGER
The number of columns of the matrices B and C. M >= 0.
P (input) INTEGER
The number of rows of the matrices A and C. P >= 0.
R (input/output) DOUBLE PRECISION array, dimension (LDR,N)
On entry, the leading N-by-N upper triangular part of this
array must contain the upper triangular matrix R.
On exit, the leading N-by-N upper triangular part of this
_
array contains the upper triangular matrix R.
The strict lower triangular part of this array is not
referenced.
LDR INTEGER
The leading dimension of array R. LDR >= MAX(1,N).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, if UPLO = 'F', the leading P-by-N part of this
array must contain the matrix A. If UPLO = 'U', the
leading MIN(P,N)-by-N part of this array must contain the
upper trapezoidal (upper triangular if P >= N) matrix A,
and the elements below the diagonal are not referenced.
On exit, the leading P-by-N part (upper trapezoidal or
triangular, if UPLO = 'U') of this array contains the
trailing components (the vectors v, see Method) of the
elementary reflectors used in the factorization.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,P).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the matrix B.
On exit, the leading N-by-M part of this array contains
_
the computed matrix B.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,M)
On entry, the leading P-by-M part of this array must
contain the matrix C.
On exit, the leading P-by-M part of this array contains
_
the computed matrix C.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
TAU (output) DOUBLE PRECISION array, dimension (N)
The scalar factors of the elementary reflectors used.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (MAX(N-1,M))
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine uses N Householder transformations exploiting the zero
pattern of the block matrix. A Householder matrix has the form
( 1 )
H = I - tau *u *u', u = ( v ),
i i i i i ( i)
where v is a P-vector, if UPLO = 'F', or a min(i,P)-vector, if
i
UPLO = 'U'. The components of v are stored in the i-th column
i
of A, and tau is stored in TAU(i).
i
In-line code for applying Householder transformations is used
whenever possible (see MB04OY routine).
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB04OD EXAMPLE PROGRAM TEXT.
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO = 0.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX, PMAX
PARAMETER ( MMAX = 20, NMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDR
PARAMETER ( LDA = PMAX, LDB = NMAX, LDC = PMAX,
$ LDR = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( NMAX-1,MMAX ) )
* .. Local Scalars ..
CHARACTER*1 UPLO
INTEGER I, J, M, N, P
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,MMAX),
$ DWORK(LDWORK), R(LDR,NMAX), TAU(NMAX)
* .. External Subroutines ..
EXTERNAL MB04OD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, UPLO
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) N
ELSE
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) M
ELSE
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) P
ELSE
READ ( NIN, FMT = * ) ( ( R(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,M ), I = 1,P )
* Compute and apply QR factorization.
CALL MB04OD( UPLO, N, M, P, R, LDR, A, LDA, B, LDB, C,
$ LDC, TAU, DWORK )
*
WRITE ( NOUT, FMT = 99997 )
DO 40 I = 1, N
DO 20 J = 1, I-1
R(I,J) = ZERO
20 CONTINUE
WRITE ( NOUT, FMT = 99996 ) ( R(I,J), J = 1,N )
40 CONTINUE
IF ( M.GT.0 ) THEN
WRITE ( NOUT, FMT = 99995 )
DO 60 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M )
60 CONTINUE
IF ( P.GT.0 ) THEN
WRITE ( NOUT, FMT = 99994 )
DO 80 I = 1, P
WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,M )
80 CONTINUE
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' MB04OD EXAMPLE PROGRAM RESULTS',/1X)
99997 FORMAT (' The updated matrix R is ')
99996 FORMAT (20(1X,F10.4))
99995 FORMAT (' The updated matrix B is ')
99994 FORMAT (' The updated matrix C is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' P is out of range.',/' P = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB04OD EXAMPLE PROGRAM DATA
3 2 2 F
3. 2. 1.
0. 2. 1.
0. 0. 1.
2. 3. 1.
4. 6. 5.
3. 2.
1. 3.
3. 2.
1. 3.
3. 2.
</PRE>
<B>Program Results</B>
<PRE>
MB04OD EXAMPLE PROGRAM RESULTS
The updated matrix R is
-5.3852 -6.6850 -4.6424
0.0000 -2.8828 -2.0694
0.0000 0.0000 -1.7793
The updated matrix B is
-4.2710 -3.7139
-0.1555 -2.1411
-1.6021 0.9398
The updated matrix C is
0.5850 1.0141
-2.7974 -3.1162
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|