File: MB04OW.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (168 lines) | stat: -rw-r--r-- 5,731 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
<HTML>
<HEAD><TITLE>MB04OW - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04OW">MB04OW</A></H2>
<H3>
Rank-one update of a Cholesky factorization (variant)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To perform the QR factorization

     ( U  ) = Q*( R ),  where  U = ( U1  U2 ),  R = ( R1  R2 ),
     ( x' )     ( 0 )              ( 0   T  )       ( 0   R3 )

  where U and R are (m+n)-by-(m+n) upper triangular matrices, x is
  an m+n element vector, U1 is m-by-m, T is n-by-n, stored
  separately, and Q is an (m+n+1)-by-(m+n+1) orthogonal matrix.

  The matrix ( U1 U2 ) must be supplied in the m-by-(m+n) upper
  trapezoidal part of the array A and this is overwritten by the
  corresponding part ( R1 R2 ) of R. The remaining upper triangular
  part of R, R3, is overwritten on the array T.

  The transformations performed are also applied to the (m+n+1)-by-p
  matrix ( B' C' d )' (' denotes transposition), where B, C, and d'
  are m-by-p, n-by-p, and 1-by-p matrices, respectively.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04OW( M, N, P, A, LDA, T, LDT, X, INCX, B, LDB,
     $                   C, LDC, D, INCD )
C     .. Scalar Arguments ..
      INTEGER            INCD, INCX, LDA, LDB, LDC, LDT, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), B(LDB,*), C(LDC,*), D(*), T(LDT,*),
     $                   X(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M      (input) INTEGER
         The number of rows of the matrix ( U1  U2 ).  M &gt;= 0.

  N      (input) INTEGER
         The order of the matrix T.  N &gt;= 0.

  P      (input) INTEGER
         The number of columns of the matrices B and C.  P &gt;= 0.

  A      (input/output) DOUBLE PRECISION array, dimension (LDA,N)
         On entry, the leading M-by-(M+N) upper trapezoidal part of
         this array must contain the upper trapezoidal matrix
         ( U1 U2 ).
         On exit, the leading M-by-(M+N) upper trapezoidal part of
         this array contains the upper trapezoidal matrix ( R1 R2 ).
         The strict lower triangle of A is not referenced.

  LDA    INTEGER
         The leading dimension of the array A.  LDA &gt;= max(1,M).

  T      (input/output) DOUBLE PRECISION array, dimension (LDT,N)
         On entry, the leading N-by-N upper triangular part of this
         array must contain the upper triangular matrix T.
         On exit, the leading N-by-N upper triangular part of this
         array contains the upper triangular matrix R3.
         The strict lower triangle of T is not referenced.

  LDT    INTEGER
         The leading dimension of the array T.  LDT &gt;= max(1,N).

  X      (input/output) DOUBLE PRECISION array, dimension
         (1+(M+N-1)*INCX), if M+N &gt; 0, or dimension (0), if M+N = 0.
         On entry, the incremented array X must contain the
         vector x. On exit, the content of X is changed.

  INCX   (input) INTEGER
         Specifies the increment for the elements of X.  INCX &gt; 0.

  B      (input/output) DOUBLE PRECISION array, dimension (LDB,P)
         On entry, the leading M-by-P part of this array must
         contain the matrix B.
         On exit, the leading M-by-P part of this array contains
         the transformed matrix B.
         If M = 0 or P = 0, this array is not referenced.

  LDB    INTEGER
         The leading dimension of the array B.
         LDB &gt;= max(1,M), if P &gt; 0;
         LDB &gt;= 1,        if P = 0.

  C      (input/output) DOUBLE PRECISION array, dimension (LDC,P)
         On entry, the leading N-by-P part of this array must
         contain the matrix C.
         On exit, the leading N-by-P part of this array contains
         the transformed matrix C.
         If N = 0 or P = 0, this array is not referenced.

  LDC    INTEGER
         The leading dimension of the array C.
         LDC &gt;= max(1,N), if P &gt; 0;
         LDC &gt;= 1,        if P = 0.

  D      (input/output) DOUBLE PRECISION array, dimension
         (1+(P-1)*INCD), if P &gt; 0, or dimension (0), if P = 0.
         On entry, the incremented array D must contain the
         vector d.
         On exit, this incremented array contains the transformed
         vector d.
         If P = 0, this array is not referenced.

  INCD   (input) INTEGER
         Specifies the increment for the elements of D.  INCD &gt; 0.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Let q = m+n. The matrix Q is formed as a sequence of plane
  rotations in planes (1, q+1), (2, q+1), ..., (q, q+1), the
  rotation in the (j, q+1)th plane, Q(j), being chosen to
  annihilate the jth element of x.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires 0((M+N)*(M+N+P)) operations and is backward
  stable.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  For P = 0, this routine produces the same result as SLICOT Library
  routine MB04OX, but matrix T may not be stored in the array A.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>