1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
<HTML>
<HEAD><TITLE>MB04QB - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04QB">MB04QB</A></H2>
<H3>
Applying a product of symplectic reflectors and Givens rotations to two general real matrices
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To overwrite general real m-by-n matrices C and D, or their
transposes, with
[ op(C) ]
Q * [ ] if TRANQ = 'N', or
[ op(D) ]
T [ op(C) ]
Q * [ ] if TRANQ = 'T',
[ op(D) ]
where Q is defined as the product of symplectic reflectors and
Givens rotations,
Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
....
diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).
Blocked version.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04QB( TRANC, TRAND, TRANQ, STOREV, STOREW, M, N, K,
$ V, LDV, W, LDW, C, LDC, D, LDD, CS, TAU, DWORK,
$ LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER STOREV, STOREW, TRANC, TRAND, TRANQ
INTEGER INFO, K, LDC, LDD, LDV, LDW, LDWORK, M, N
C .. Array Arguments ..
DOUBLE PRECISION C(LDC,*), CS(*), D(LDD,*), DWORK(*), TAU(*),
$ V(LDV,*), W(LDW,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TRANC CHARACTER*1
Specifies the form of op( C ) as follows:
= 'N': op( C ) = C;
= 'T': op( C ) = C';
= 'C': op( C ) = C'.
TRAND CHARACTER*1
Specifies the form of op( D ) as follows:
= 'N': op( D ) = D;
= 'T': op( D ) = D';
= 'C': op( D ) = D'.
TRANQ CHARACTER*1
= 'N': apply Q;
= 'T': apply Q'.
STOREV CHARACTER*1
Specifies how the vectors which define the concatenated
Householder reflectors contained in V are stored:
= 'C': columnwise;
= 'R': rowwise.
STOREW CHARACTER*1
Specifies how the vectors which define the concatenated
Householder reflectors contained in W are stored:
= 'C': columnwise;
= 'R': rowwise.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrices op(C) and op(D).
M >= 0.
N (input) INTEGER
The number of columns of the matrices op(C) and op(D).
N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q. M >= K >= 0.
V (input) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C',
(LDV,M) if STOREV = 'R'
On entry with STOREV = 'C', the leading M-by-K part of
this array must contain in its columns the vectors which
define the elementary reflectors F(i).
On entry with STOREV = 'R', the leading K-by-M part of
this array must contain in its rows the vectors which
define the elementary reflectors F(i).
LDV INTEGER
The leading dimension of the array V.
LDV >= MAX(1,M), if STOREV = 'C';
LDV >= MAX(1,K), if STOREV = 'R'.
W (input) DOUBLE PRECISION array, dimension
(LDW,K) if STOREW = 'C',
(LDW,M) if STOREW = 'R'
On entry with STOREW = 'C', the leading M-by-K part of
this array must contain in its columns the vectors which
define the elementary reflectors H(i).
On entry with STOREW = 'R', the leading K-by-M part of
this array must contain in its rows the vectors which
define the elementary reflectors H(i).
LDW INTEGER
The leading dimension of the array W.
LDW >= MAX(1,M), if STOREW = 'C';
LDW >= MAX(1,K), if STOREW = 'R'.
C (input/output) DOUBLE PRECISION array, dimension
(LDC,N) if TRANC = 'N',
(LDC,M) if TRANC = 'T' or TRANC = 'C'
On entry with TRANC = 'N', the leading M-by-N part of
this array must contain the matrix C.
On entry with TRANC = 'C' or TRANC = 'T', the leading
N-by-M part of this array must contain the transpose of
the matrix C.
On exit with TRANC = 'N', the leading M-by-N part of
this array contains the updated matrix C.
On exit with TRANC = 'C' or TRANC = 'T', the leading
N-by-M part of this array contains the transpose of the
updated matrix C.
LDC INTEGER
The leading dimension of the array C.
LDC >= MAX(1,M), if TRANC = 'N';
LDC >= MAX(1,N), if TRANC = 'T' or TRANC = 'C'.
D (input/output) DOUBLE PRECISION array, dimension
(LDD,N) if TRAND = 'N',
(LDD,M) if TRAND = 'T' or TRAND = 'C'
On entry with TRAND = 'N', the leading M-by-N part of
this array must contain the matrix D.
On entry with TRAND = 'C' or TRAND = 'T', the leading
N-by-M part of this array must contain the transpose of
the matrix D.
On exit with TRAND = 'N', the leading M-by-N part of
this array contains the updated matrix D.
On exit with TRAND = 'C' or TRAND = 'T', the leading
N-by-M part of this array contains the transpose of the
updated matrix D.
LDD INTEGER
The leading dimension of the array D.
LDD >= MAX(1,M), if TRAND = 'N';
LDD >= MAX(1,N), if TRAND = 'T' or TRAND = 'C'.
CS (input) DOUBLE PRECISION array, dimension (2*K)
On entry, the first 2*K elements of this array must
contain the cosines and sines of the symplectic Givens
rotations G(i).
TAU (input) DOUBLE PRECISION array, dimension (K)
On entry, the first K elements of this array must
contain the scalar factors of the elementary reflectors
F(i).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK.
On exit, if INFO = -20, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= MAX(1,N).
If LDWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the
DWORK array, returns this value as the first entry of
the DWORK array, and no error message related to LDWORK
is issued by XERBLA.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kressner, D.
Block algorithms for orthogonal symplectic factorizations.
BIT, 43 (4), pp. 775-790, 2003.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|