1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
<HTML>
<HEAD><TITLE>MB04QC - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04QC">MB04QC</A></H2>
<H3>
Premultiplying a real matrix with an orthogonal symplectic block reflector
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To apply the orthogonal symplectic block reflector
[ I+V*T*V' V*R*S*V' ]
Q = [ ]
[ -V*R*S*V' I+V*T*V' ]
or its transpose to a real 2m-by-n matrix [ op(A); op(B) ] from
the left.
The k-by-k upper triangular blocks of the matrices
[ S1 ] [ T11 T12 T13 ]
R = [ R1 R2 R3 ], S = [ S2 ], T = [ T21 T22 T23 ],
[ S3 ] [ T31 T32 T33 ]
with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular,
are stored rowwise in the arrays RS and T, respectively.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04QC( STRAB, TRANA, TRANB, TRANQ, DIRECT, STOREV,
$ STOREW, M, N, K, V, LDV, W, LDW, RS, LDRS, T,
$ LDT, A, LDA, B, LDB, DWORK )
C .. Scalar Arguments ..
CHARACTER DIRECT, STOREV, STOREW, STRAB, TRANA, TRANB,
$ TRANQ
INTEGER K, LDA, LDB, LDRS, LDT, LDV, LDW, M, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), RS(LDRS,*),
$ T(LDT,*), V(LDV,*), W(LDW,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
STRAB CHARACTER*1
Specifies the structure of the first blocks of A and B:
= 'Z': the leading K-by-N submatrices of op(A) and op(B)
are (implicitly) assumed to be zero;
= 'N'; no structure to mention.
TRANA CHARACTER*1
Specifies the form of op( A ) as follows:
= 'N': op( A ) = A;
= 'T': op( A ) = A';
= 'C': op( A ) = A'.
TRANB CHARACTER*1
Specifies the form of op( B ) as follows:
= 'N': op( B ) = B;
= 'T': op( B ) = B';
= 'C': op( B ) = B'.
DIRECT CHARACTER*1
This is a dummy argument, which is reserved for future
extensions of this subroutine. Not referenced.
TRANQ CHARACTER*1
= 'N': apply Q;
= 'T': apply Q'.
STOREV CHARACTER*1
Specifies how the vectors which define the concatenated
Householder reflectors contained in V are stored:
= 'C': columnwise;
= 'R': rowwise.
STOREW CHARACTER*1
Specifies how the vectors which define the concatenated
Householder reflectors contained in W are stored:
= 'C': columnwise;
= 'R': rowwise.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrices op(A) and op(B).
M >= 0.
N (input) INTEGER
The number of columns of the matrices op(A) and op(B).
N >= 0.
K (input) INTEGER
The order of the triangular matrices defining R, S and T.
M >= K >= 0.
V (input) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C',
(LDV,M) if STOREV = 'R'
On entry with STOREV = 'C', the leading M-by-K part of
this array must contain in its columns the vectors which
define the elementary reflector used to form parts of Q.
On entry with STOREV = 'R', the leading K-by-M part of
this array must contain in its rows the vectors which
define the elementary reflector used to form parts of Q.
LDV INTEGER
The leading dimension of the array V.
LDV >= MAX(1,M), if STOREV = 'C';
LDV >= MAX(1,K), if STOREV = 'R'.
W (input) DOUBLE PRECISION array, dimension
(LDW,K) if STOREW = 'C',
(LDW,M) if STOREW = 'R'
On entry with STOREW = 'C', the leading M-by-K part of
this array must contain in its columns the vectors which
define the elementary reflector used to form parts of Q.
On entry with STOREW = 'R', the leading K-by-M part of
this array must contain in its rows the vectors which
define the elementary reflector used to form parts of Q.
LDW INTEGER
The leading dimension of the array W.
LDW >= MAX(1,M), if STOREW = 'C';
LDW >= MAX(1,K), if STOREW = 'R'.
RS (input) DOUBLE PRECISION array, dimension (K,6*K)
On entry, the leading K-by-6*K part of this array must
contain the upper triangular matrices defining the factors
R and S of the symplectic block reflector Q. The
(strictly) lower portions of this array are not
referenced.
LDRS INTEGER
The leading dimension of the array RS. LDRS >= MAX(1,K).
T (input) DOUBLE PRECISION array, dimension (K,9*K)
On entry, the leading K-by-9*K part of this array must
contain the upper triangular matrices defining the factor
T of the symplectic block reflector Q. The (strictly)
lower portions of this array are not referenced.
LDT INTEGER
The leading dimension of the array T. LDT >= MAX(1,K).
A (input/output) DOUBLE PRECISION array, dimension
(LDA,N) if TRANA = 'N',
(LDA,M) if TRANA = 'C' or TRANA = 'T'
On entry with TRANA = 'N', the leading M-by-N part of this
array must contain the matrix A.
On entry with TRANA = 'T' or TRANA = 'C', the leading
N-by-M part of this array must contain the matrix A.
LDA INTEGER
The leading dimension of the array A.
LDA >= MAX(1,M), if TRANA = 'N';
LDA >= MAX(1,N), if TRANA = 'C' or TRANA = 'T'.
B (input/output) DOUBLE PRECISION array, dimension
(LDB,N) if TRANB = 'N',
(LDB,M) if TRANB = 'C' or TRANB = 'T'
On entry with TRANB = 'N', the leading M-by-N part of this
array must contain the matrix B.
On entry with TRANB = 'T' or TRANB = 'C', the leading
N-by-M part of this array must contain the matrix B.
LDB INTEGER
The leading dimension of the array B.
LDB >= MAX(1,M), if TRANB = 'N';
LDB >= MAX(1,N), if TRANB = 'C' or TRANB = 'T'.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK), where
LDWORK >= 8*N*K, if STRAB = 'Z',
LDWORK >= 9*N*K, if STRAB = 'N'.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kressner, D.
Block algorithms for orthogonal symplectic factorizations.
BIT, 43 (4), pp. 775-790, 2003.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires 16*( M - K )*N + ( 26*K - 4 )*K*N floating
point operations if STRAB = 'Z' and additional ( 12*K + 2 )*K*N
floating point operations if STRAB = 'N'.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|