File: MB04QC.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (230 lines) | stat: -rw-r--r-- 7,879 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
<HTML>
<HEAD><TITLE>MB04QC - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04QC">MB04QC</A></H2>
<H3>
Premultiplying a real matrix with an orthogonal symplectic block reflector
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To apply the orthogonal symplectic block reflector

           [  I+V*T*V'  V*R*S*V'  ]
      Q =  [                      ]
           [ -V*R*S*V'  I+V*T*V'  ]

  or its transpose to a real 2m-by-n matrix [ op(A); op(B) ] from
  the left.
  The k-by-k upper triangular blocks of the matrices

                              [ S1 ]       [ T11 T12 T13 ]
      R  = [ R1 R2 R3 ],  S = [ S2 ],  T = [ T21 T22 T23 ],
                              [ S3 ]       [ T31 T32 T33 ]

  with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular,
  are stored rowwise in the arrays RS and T, respectively.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04QC( STRAB, TRANA, TRANB, TRANQ, DIRECT, STOREV,
     $                   STOREW, M, N, K, V, LDV, W, LDW, RS, LDRS, T,
     $                   LDT, A, LDA, B, LDB, DWORK )
C     .. Scalar Arguments ..
      CHARACTER         DIRECT, STOREV, STOREW, STRAB, TRANA, TRANB,
     $                  TRANQ
      INTEGER           K, LDA, LDB, LDRS, LDT, LDV, LDW, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), RS(LDRS,*),
     $                  T(LDT,*), V(LDV,*), W(LDW,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  STRAB   CHARACTER*1
          Specifies the structure of the first blocks of A and B:
          = 'Z':  the leading K-by-N submatrices of op(A) and op(B)
                  are (implicitly) assumed to be zero;
          = 'N';  no structure to mention.

  TRANA   CHARACTER*1
          Specifies the form of op( A ) as follows:
          = 'N':  op( A ) = A;
          = 'T':  op( A ) = A';
          = 'C':  op( A ) = A'.

  TRANB   CHARACTER*1
          Specifies the form of op( B ) as follows:
          = 'N':  op( B ) = B;
          = 'T':  op( B ) = B';
          = 'C':  op( B ) = B'.

  DIRECT  CHARACTER*1
          This is a dummy argument, which is reserved for future
          extensions of this subroutine. Not referenced.

  TRANQ   CHARACTER*1
          = 'N':  apply Q;
          = 'T':  apply Q'.

  STOREV  CHARACTER*1
          Specifies how the vectors which define the concatenated
          Householder reflectors contained in V are stored:
          = 'C':  columnwise;
          = 'R':  rowwise.

  STOREW  CHARACTER*1
          Specifies how the vectors which define the concatenated
          Householder reflectors contained in W are stored:
          = 'C':  columnwise;
          = 'R':  rowwise.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows of the matrices op(A) and op(B).
          M &gt;= 0.

  N       (input) INTEGER
          The number of columns of the matrices op(A) and op(B).
          N &gt;= 0.

  K       (input) INTEGER
          The order of the triangular matrices defining R, S and T.
          M &gt;= K &gt;= 0.

  V       (input) DOUBLE PRECISION array, dimension
                  (LDV,K) if STOREV = 'C',
                  (LDV,M) if STOREV = 'R'
          On entry with STOREV = 'C', the leading M-by-K part of
          this array must contain in its columns the vectors which
          define the elementary reflector used to form parts of Q.
          On entry with STOREV = 'R', the leading K-by-M part of
          this array must contain in its rows the vectors which
          define the elementary reflector used to form parts of Q.

  LDV     INTEGER
          The leading dimension of the array V.
          LDV &gt;= MAX(1,M),  if STOREV = 'C';
          LDV &gt;= MAX(1,K),  if STOREV = 'R'.

  W       (input) DOUBLE PRECISION array, dimension
                  (LDW,K) if STOREW = 'C',
                  (LDW,M) if STOREW = 'R'
          On entry with STOREW = 'C', the leading M-by-K part of
          this array must contain in its columns the vectors which
          define the elementary reflector used to form parts of Q.
          On entry with STOREW = 'R', the leading K-by-M part of
          this array must contain in its rows the vectors which
          define the elementary reflector used to form parts of Q.

  LDW     INTEGER
          The leading dimension of the array W.
          LDW &gt;= MAX(1,M),  if STOREW = 'C';
          LDW &gt;= MAX(1,K),  if STOREW = 'R'.

  RS      (input) DOUBLE PRECISION array, dimension (K,6*K)
          On entry, the leading K-by-6*K part of this array must
          contain the upper triangular matrices defining the factors
          R and S of the symplectic block reflector Q. The
          (strictly) lower portions of this array are not
          referenced.

  LDRS    INTEGER
          The leading dimension of the array RS.  LDRS &gt;= MAX(1,K).

  T       (input) DOUBLE PRECISION array, dimension (K,9*K)
          On entry, the leading K-by-9*K part of this array must
          contain the upper triangular matrices defining the factor
          T of the symplectic block reflector Q. The (strictly)
          lower portions of this array are not referenced.

  LDT     INTEGER
          The leading dimension of the array T.  LDT &gt;= MAX(1,K).

  A       (input/output) DOUBLE PRECISION array, dimension
                  (LDA,N) if TRANA = 'N',
                  (LDA,M) if TRANA = 'C' or TRANA = 'T'
          On entry with TRANA = 'N', the leading M-by-N part of this
          array must contain the matrix A.
          On entry with TRANA = 'T' or TRANA = 'C', the leading
          N-by-M part of this array must contain the matrix A.

  LDA     INTEGER
          The leading dimension of the array A.
          LDA &gt;= MAX(1,M),  if TRANA = 'N';
          LDA &gt;= MAX(1,N),  if TRANA = 'C' or TRANA = 'T'.

  B       (input/output) DOUBLE PRECISION array, dimension
                  (LDB,N) if TRANB = 'N',
                  (LDB,M) if TRANB = 'C' or TRANB = 'T'
          On entry with TRANB = 'N', the leading M-by-N part of this
          array must contain the matrix B.
          On entry with TRANB = 'T' or TRANB = 'C', the leading
          N-by-M part of this array must contain the matrix B.

  LDB     INTEGER
          The leading dimension of the array B.
          LDB &gt;= MAX(1,M),  if TRANB = 'N';
          LDB &gt;= MAX(1,N),  if TRANB = 'C' or TRANB = 'T'.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK), where
          LDWORK &gt;= 8*N*K,   if STRAB = 'Z',
          LDWORK &gt;= 9*N*K,   if STRAB = 'N'.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Kressner, D.
      Block algorithms for orthogonal symplectic factorizations.
      BIT, 43 (4), pp. 775-790, 2003.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires 16*( M - K )*N + ( 26*K - 4 )*K*N floating
  point operations if STRAB = 'Z' and additional ( 12*K + 2 )*K*N
  floating point operations if STRAB = 'N'.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>