File: MB04QF.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (182 lines) | stat: -rw-r--r-- 6,010 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
<HTML>
<HEAD><TITLE>MB04QF - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04QF">MB04QF</A></H2>
<H3>
Forming the triangular block factors of a symplectic block reflector
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To form the triangular block factors R, S and T of a symplectic
  block reflector SH, which is defined as a product of 2k
  concatenated Householder reflectors and k Givens rotations,

      SH = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
           diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
                             ....
           diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).

  The upper triangular blocks of the matrices

                              [ S1 ]       [ T11 T12 T13 ]
      R  = [ R1 R2 R3 ],  S = [ S2 ],  T = [ T21 T22 T23 ],
                              [ S3 ]       [ T31 T32 T33 ]

  with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular,
  are stored rowwise in the arrays RS and T, respectively.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04QF( DIRECT, STOREV, STOREW, N, K, V, LDV, W, LDW,
     $                   CS, TAU, RS, LDRS, T, LDT, DWORK )
C     .. Scalar Arguments ..
      CHARACTER         DIRECT, STOREV, STOREW
      INTEGER           K, LDRS, LDT, LDV, LDW, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), RS(LDRS,*), T(LDT,*),
     $                  TAU(*), V(LDV,*), W(LDW,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DIRECT  CHARACTER*1
          This is a dummy argument, which is reserved for future
          extensions of this subroutine. Not referenced.

  STOREV  CHARACTER*1
          Specifies how the vectors which define the concatenated
          Householder F(i) reflectors are stored:
          = 'C':  columnwise;
          = 'R':  rowwise.

  STOREW  CHARACTER*1
          Specifies how the vectors which define the concatenated
          Householder H(i) reflectors are stored:
          = 'C':  columnwise;
          = 'R':  rowwise.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the Householder reflectors F(i) and H(i).
          N &gt;= 0.

  K       (input) INTEGER
          The number of Givens rotations.  K &gt;= 1.

  V       (input) DOUBLE PRECISION array, dimension
                  (LDV,K) if STOREV = 'C',
                  (LDV,N) if STOREV = 'R'
          On entry with STOREV = 'C', the leading N-by-K part of
          this array must contain in its i-th column the vector
          which defines the elementary reflector F(i).
          On entry with STOREV = 'R', the leading K-by-N part of
          this array must contain in its i-th row the vector
          which defines the elementary reflector F(i).

  LDV     INTEGER
          The leading dimension of the array V.
          LDV &gt;= MAX(1,N),  if STOREV = 'C';
          LDV &gt;= K,         if STOREV = 'R'.

  W       (input) DOUBLE PRECISION array, dimension
                  (LDW,K) if STOREW = 'C',
                  (LDW,N) if STOREW = 'R'
          On entry with STOREW = 'C', the leading N-by-K part of
          this array must contain in its i-th column the vector
          which defines the elementary reflector H(i).
          On entry with STOREV = 'R', the leading K-by-N part of
          this array must contain in its i-th row the vector
          which defines the elementary reflector H(i).

  LDW     INTEGER
          The leading dimension of the array W.
          LDW &gt;= MAX(1,N),  if STOREW = 'C';
          LDW &gt;= K,         if STOREW = 'R'.

  CS      (input) DOUBLE PRECISION array, dimension (2*K)
          On entry, the first 2*K elements of this array must
          contain the cosines and sines of the symplectic Givens
          rotations G(i).

  TAU     (input) DOUBLE PRECISION array, dimension (K)
          On entry, the first K elements of this array must
          contain the scalar factors of the elementary reflectors
          F(i).

  RS      (output) DOUBLE PRECISION array, dimension (K,6*K)
          On exit, the leading K-by-6*K part of this array contains
          the upper triangular matrices defining the factors R and
          S of the symplectic block reflector SH. The (strictly)
          lower portions of this array are not used.

  LDRS    INTEGER
          The leading dimension of the array RS.  LDRS &gt;= K.

  T       (output) DOUBLE PRECISION array, dimension (K,9*K)
          On exit, the leading K-by-9*K part of this array contains
          the upper triangular matrices defining the factor T of the
          symplectic block reflector SH. The (strictly) lower
          portions of this array are not used.

  LDT     INTEGER
          The leading dimension of the array T.  LDT &gt;= K.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (3*K)

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Kressner, D.
      Block algorithms for orthogonal symplectic factorizations.
      BIT, 43 (4), pp. 775-790, 2003.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires ( 4*K - 2 )*K*N + 19/3*K*K*K + 1/2*K*K
  + 43/6*K - 4 floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>