1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
<HTML>
<HEAD><TITLE>MB04QF - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04QF">MB04QF</A></H2>
<H3>
Forming the triangular block factors of a symplectic block reflector
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To form the triangular block factors R, S and T of a symplectic
block reflector SH, which is defined as a product of 2k
concatenated Householder reflectors and k Givens rotations,
SH = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
....
diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).
The upper triangular blocks of the matrices
[ S1 ] [ T11 T12 T13 ]
R = [ R1 R2 R3 ], S = [ S2 ], T = [ T21 T22 T23 ],
[ S3 ] [ T31 T32 T33 ]
with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular,
are stored rowwise in the arrays RS and T, respectively.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04QF( DIRECT, STOREV, STOREW, N, K, V, LDV, W, LDW,
$ CS, TAU, RS, LDRS, T, LDT, DWORK )
C .. Scalar Arguments ..
CHARACTER DIRECT, STOREV, STOREW
INTEGER K, LDRS, LDT, LDV, LDW, N
C .. Array Arguments ..
DOUBLE PRECISION CS(*), DWORK(*), RS(LDRS,*), T(LDT,*),
$ TAU(*), V(LDV,*), W(LDW,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DIRECT CHARACTER*1
This is a dummy argument, which is reserved for future
extensions of this subroutine. Not referenced.
STOREV CHARACTER*1
Specifies how the vectors which define the concatenated
Householder F(i) reflectors are stored:
= 'C': columnwise;
= 'R': rowwise.
STOREW CHARACTER*1
Specifies how the vectors which define the concatenated
Householder H(i) reflectors are stored:
= 'C': columnwise;
= 'R': rowwise.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the Householder reflectors F(i) and H(i).
N >= 0.
K (input) INTEGER
The number of Givens rotations. K >= 1.
V (input) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C',
(LDV,N) if STOREV = 'R'
On entry with STOREV = 'C', the leading N-by-K part of
this array must contain in its i-th column the vector
which defines the elementary reflector F(i).
On entry with STOREV = 'R', the leading K-by-N part of
this array must contain in its i-th row the vector
which defines the elementary reflector F(i).
LDV INTEGER
The leading dimension of the array V.
LDV >= MAX(1,N), if STOREV = 'C';
LDV >= K, if STOREV = 'R'.
W (input) DOUBLE PRECISION array, dimension
(LDW,K) if STOREW = 'C',
(LDW,N) if STOREW = 'R'
On entry with STOREW = 'C', the leading N-by-K part of
this array must contain in its i-th column the vector
which defines the elementary reflector H(i).
On entry with STOREV = 'R', the leading K-by-N part of
this array must contain in its i-th row the vector
which defines the elementary reflector H(i).
LDW INTEGER
The leading dimension of the array W.
LDW >= MAX(1,N), if STOREW = 'C';
LDW >= K, if STOREW = 'R'.
CS (input) DOUBLE PRECISION array, dimension (2*K)
On entry, the first 2*K elements of this array must
contain the cosines and sines of the symplectic Givens
rotations G(i).
TAU (input) DOUBLE PRECISION array, dimension (K)
On entry, the first K elements of this array must
contain the scalar factors of the elementary reflectors
F(i).
RS (output) DOUBLE PRECISION array, dimension (K,6*K)
On exit, the leading K-by-6*K part of this array contains
the upper triangular matrices defining the factors R and
S of the symplectic block reflector SH. The (strictly)
lower portions of this array are not used.
LDRS INTEGER
The leading dimension of the array RS. LDRS >= K.
T (output) DOUBLE PRECISION array, dimension (K,9*K)
On exit, the leading K-by-9*K part of this array contains
the upper triangular matrices defining the factor T of the
symplectic block reflector SH. The (strictly) lower
portions of this array are not used.
LDT INTEGER
The leading dimension of the array T. LDT >= K.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (3*K)
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kressner, D.
Block algorithms for orthogonal symplectic factorizations.
BIT, 43 (4), pp. 775-790, 2003.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires ( 4*K - 2 )*K*N + 19/3*K*K*K + 1/2*K*K
+ 43/6*K - 4 floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|