File: MB04RB.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (203 lines) | stat: -rw-r--r-- 6,522 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
<HTML>
<HEAD><TITLE>MB04RB - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04RB">MB04RB</A></H2>
<H3>
Reduction of a skew-Hamiltonian matrix to Paige/Van Loan (PVL) form (blocked version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To reduce a skew-Hamiltonian matrix,

                [  A   G  ]
          W  =  [       T ] ,
                [  Q   A  ]

  where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric
  matrices, to Paige/Van Loan (PVL) form. That is, an orthogonal
  symplectic matrix U is computed so that

            T       [  Aout  Gout  ]
           U W U =  [            T ] ,
                    [    0   Aout  ]

  where Aout is in upper Hessenberg form.
  Blocked version.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04RB( N, ILO, A, LDA, QG, LDQG, CS, TAU, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           ILO, INFO, LDA, LDQG, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), CS(*), DWORK(*), QG(LDQG,*), TAU(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.  N &gt;= 0.

  ILO     (input) INTEGER
          It is assumed that A is already upper triangular and Q is
          zero in rows and columns 1:ILO-1. ILO is normally set by a
          previous call to the SLICOT Library routine MB04DS;
          otherwise it should be set to 1.
          1 &lt;= ILO &lt;= N+1, if N &gt; 0; ILO = 1, if N = 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A.
          On exit, the leading N-by-N part of this array contains
          the matrix Aout and, in the zero part of Aout,
          information about the elementary reflectors used to
          compute the PVL factorization.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  QG      (input/output) DOUBLE PRECISION array, dimension
                         (LDQG,N+1)
          On entry, the leading N-by-N+1 part of this array must
          contain in columns 1:N the strictly lower triangular part
          of the matrix Q and in columns 2:N+1 the strictly upper
          triangular part of the matrix G. The parts containing the
          diagonal and the first superdiagonal of this array are not
          referenced.
          On exit, the leading N-by-N+1 part of this array contains
          in its first N-1 columns information about the elementary
          reflectors used to compute the PVL factorization and in
          its last N columns the strictly upper triangular part of
          the matrix Gout.

  LDQG    INTEGER
          The leading dimension of the array QG.  LDQG &gt;= MAX(1,N).

  CS      (output) DOUBLE PRECISION array, dimension (2N-2)
          On exit, the first 2N-2 elements of this array contain the
          cosines and sines of the symplectic Givens rotations used
          to compute the PVL factorization.

  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
          On exit, the first N-1 elements of this array contain the
          scalar factors of some of the elementary reflectors.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal value
          of LDWORK, 8*N*NB + 3*NB, where NB is the optimal
          block size.
          On exit, if  INFO = -10,  DWORK(1)  returns the minimum
          value of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.  LDWORK &gt;= MAX(1,N-1).

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  An algorithm similar to the block algorithm for the symplectic
  URV factorization described in [2] is used.

  The matrix U is represented as a product of symplectic reflectors
  and Givens rotations

  U = diag( H(1),H(1) )     G(1)   diag( F(1),F(1) )
      diag( H(2),H(2) )     G(2)   diag( F(2),F(2) )
                             ....
      diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ).

  Each H(i) has the form

        H(i) = I - tau * v * v'

  where tau is a real scalar, and v is a real vector with v(1:i) = 0
  and v(i+1) = 1; v(i+2:n) is stored on exit in QG(i+2:n,i), and
  tau in QG(i+1,i).

  Each F(i) has the form

        F(i) = I - nu * w * w'

  where nu is a real scalar, and w is a real vector with w(1:i) = 0
  and w(i+1) = 1; w(i+2:n) is stored on exit in A(i+2:n,i), and
  nu in TAU(i).

  Each G(i) is a Givens rotation acting on rows i+1 and n+i+1, where
  the cosine is stored in CS(2*i-1) and the sine in CS(2*i).

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires O(N**3) floating point operations and is
  strongly backward stable.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Van Loan, C.F.
      A symplectic method for approximating all the eigenvalues of
      a Hamiltonian matrix.
      Linear Algebra and its Applications, 61, pp. 233-251, 1984.

  [2] Kressner, D.
      Block algorithms for orthogonal symplectic factorizations.
      BIT, 43(4), pp. 775-790, 2003.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>