1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
<HTML>
<HEAD><TITLE>MB04TS - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04TS">MB04TS</A></H2>
<H3>
Symplectic URV decomposition of a real 2N-by-2N matrix (unblocked version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a symplectic URV (SURV) decomposition of a real
2N-by-2N matrix H:
[ op(A) G ] T [ op(R11) R12 ] T
H = [ ] = U R V = U * [ ] * V ,
[ Q op(B) ] [ 0 op(R22) ]
where A, B, G, Q, R12 are real N-by-N matrices, op(R11) is a real
N-by-N upper triangular matrix, op(R22) is a real N-by-N lower
Hessenberg matrix and U, V are 2N-by-2N orthogonal symplectic
matrices. Unblocked version.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04TS( TRANA, TRANB, N, ILO, A, LDA, B, LDB, G, LDG,
$ Q, LDQ, CSL, CSR, TAUL, TAUR, DWORK, LDWORK,
$ INFO )
C .. Scalar Arguments ..
CHARACTER TRANA, TRANB
INTEGER ILO, INFO, LDA, LDB, LDG, LDQ, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), CSL(*), CSR(*), DWORK(*),
$ G(LDG,*), Q(LDQ,*), TAUL(*), TAUR(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TRANA CHARACTER*1
Specifies the form of op( A ) as follows:
= 'N': op( A ) = A;
= 'T': op( A ) = A';
= 'C': op( A ) = A'.
TRANB CHARACTER*1
Specifies the form of op( B ) as follows:
= 'N': op( B ) = B;
= 'T': op( B ) = B';
= 'C': op( B ) = B'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
It is assumed that op(A) is already upper triangular,
op(B) is lower triangular and Q is zero in rows and
columns 1:ILO-1. ILO is normally set by a previous call
to MB04DD; otherwise it should be set to 1.
1 <= ILO <= N, if N > 0; ILO=1, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the matrix A.
On exit, the leading N-by-N part of this array contains
the triangular matrix R11, and in the zero part
information about the elementary reflectors used to
compute the SURV decomposition.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the leading N-by-N part of this array must
contain the matrix B.
On exit, the leading N-by-N part of this array contains
the Hessenberg matrix R22, and in the zero part
information about the elementary reflectors used to
compute the SURV decomposition.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1,N).
G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
On entry, the leading N-by-N part of this array must
contain the matrix G.
On exit, the leading N-by-N part of this array contains
the matrix R12.
LDG INTEGER
The leading dimension of the array G. LDG >= MAX(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, the leading N-by-N part of this array must
contain the matrix Q.
On exit, the leading N-by-N part of this array contains
information about the elementary reflectors used to
compute the SURV decomposition.
LDQ INTEGER
The leading dimension of the array Q. LDG >= MAX(1,N).
CSL (output) DOUBLE PRECISION array, dimension (2N)
On exit, the first 2N elements of this array contain the
cosines and sines of the symplectic Givens rotations
applied from the left-hand side used to compute the SURV
decomposition.
CSR (output) DOUBLE PRECISION array, dimension (2N-2)
On exit, the first 2N-2 elements of this array contain the
cosines and sines of the symplectic Givens rotations
applied from the right-hand side used to compute the SURV
decomposition.
TAUL (output) DOUBLE PRECISION array, dimension (N)
On exit, the first N elements of this array contain the
scalar factors of some of the elementary reflectors
applied from the left-hand side.
TAUR (output) DOUBLE PRECISION array, dimension (N-1)
On exit, the first N-1 elements of this array contain the
scalar factors of some of the elementary reflectors
applied from the right-hand side.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK.
On exit, if INFO = -16, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= MAX(1,N).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrices U and V are represented as products of symplectic
reflectors and Givens rotations
U = diag( HU(1),HU(1) ) GU(1) diag( FU(1),FU(1) )
diag( HU(2),HU(2) ) GU(2) diag( FU(2),FU(2) )
....
diag( HU(n),HU(n) ) GU(n) diag( FU(n),FU(n) ),
V = diag( HV(1),HV(1) ) GV(1) diag( FV(1),FV(1) )
diag( HV(2),HV(2) ) GV(2) diag( FV(2),FV(2) )
....
diag( HV(n-1),HV(n-1) ) GV(n-1) diag( FV(n-1),FV(n-1) ).
Each HU(i) has the form
HU(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
Q(i+1:n,i), and tau in Q(i,i).
Each FU(i) has the form
FU(i) = I - nu * w * w'
where nu is a real scalar, and w is a real vector with
w(1:i-1) = 0 and w(i) = 1; w(i+1:n) is stored on exit in
A(i+1:n,i), if op(A) = 'N', and in A(i,i+1:n), otherwise. The
scalar nu is stored in TAUL(i).
Each GU(i) is a Givens rotation acting on rows i and n+i,
where the cosine is stored in CSL(2*i-1) and the sine in
CSL(2*i).
Each HV(i) has the form
HV(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
Q(i,i+2:n), and tau in Q(i,i+1).
Each FV(i) has the form
FV(i) = I - nu * w * w'
where nu is a real scalar, and w is a real vector with
w(1:i) = 0 and w(i+1) = 1; w(i+2:n) is stored on exit in
B(i,i+2:n), if op(B) = 'N', and in B(i+2:n,i), otherwise.
The scalar nu is stored in TAUR(i).
Each GV(i) is a Givens rotation acting on columns i+1 and n+i+1,
where the cosine is stored in CSR(2*i-1) and the sine in
CSR(2*i).
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires 80/3 N**3 + 20 N**2 + O(N) floating point
operations and is numerically backward stable.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Mehrmann, V., and Xu, H.
A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic
pencils. Numer. Math., Vol 78 (3), pp. 329-358, 1998.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB04TS/MB04WR EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 200 )
INTEGER LDA, LDB, LDG, LDQ, LDRES, LDU1, LDU2, LDV1,
$ LDV2, LDWORK
PARAMETER ( LDA = NMAX, LDB = NMAX, LDG = NMAX, LDQ = NMAX,
$ LDRES = NMAX, LDU1 = NMAX, LDU2 = NMAX,
$ LDV1 = NMAX, LDV2 = NMAX, LDWORK = NMAX )
* .. Local Scalars ..
CHARACTER*1 TRANA, TRANB, TRANV1
INTEGER I, INFO, J, N
DOUBLE PRECISION TEMP
* .. Local Arrays ..
DOUBLE PRECISION A(LDA, NMAX), B(LDB, NMAX), CSL(2*NMAX),
$ CSR(2*NMAX), DWORK(LDWORK), G(LDG,NMAX),
$ Q(LDQ,NMAX), RES(LDRES,5*NMAX), TAUL(NMAX),
$ TAUR(NMAX), U1(LDU1,NMAX), U2(LDU2, NMAX),
$ V1(LDV1, NMAX), V2(LDV2,NMAX)
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE, DLAPY2, MA02JD
EXTERNAL DLANGE, DLAPY2, LSAME, MA02JD
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, MB04TS, MB04WR
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, TRANA, TRANB
IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, A, LDA, RES, LDRES )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, B, LDB, RES(1,N+1), LDRES )
READ ( NIN, FMT = * ) ( ( G(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, G, LDG, RES(1,2*N+1), LDRES )
READ ( NIN, FMT = * ) ( ( Q(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, Q, LDQ, RES(1,3*N+1), LDRES )
CALL MB04TS( TRANA, TRANB, N, 1, A, LDA, B, LDB, G, LDG, Q,
$ LDQ, CSL, CSR, TAUL, TAUR, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
CALL DLACPY( 'All', N, N, A, LDA, U1, LDU1 )
CALL DLACPY( 'All', N, N, Q, LDQ, U2, LDU2 )
CALL MB04WR( 'U', TRANA, N, 1, U1, LDU1, U2, LDU2, CSL,
$ TAUL, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
CALL DLACPY( 'All', N, N, Q, LDQ, V2, LDV2 )
CALL DLACPY( 'All', N, N, B, LDB, V1, LDV1 )
CALL MB04WR( 'V', TRANB, N, 1, V1, LDV1, V2, LDV2,
$ CSR, TAUR, DWORK, LDWORK, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
WRITE ( NOUT, FMT = 99996 )
IF ( LSAME( TRANA, 'N' ) ) THEN
DO 10 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N )
10 CONTINUE
DO 20 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99991 ) MA02JD( .FALSE.,
$ .FALSE., N, U1, LDU1, U2, LDU2,
$ RES(1,4*N+1), LDRES )
ELSE
DO 30 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( U1(J,I), J = 1,N ), ( U2(I,J), J = 1,N )
30 CONTINUE
DO 40 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( -U2(I,J), J = 1,N ), ( U1(J,I), J = 1,N )
40 CONTINUE
WRITE ( NOUT, FMT = 99991 ) MA02JD( .TRUE.,
$ .FALSE., N, U1, LDU1, U2, LDU2,
$ RES(1,4*N+1), LDRES )
END IF
WRITE ( NOUT, FMT = 99995 )
CALL DLASET( 'All', N, N, ZERO, ZERO, Q, LDQ )
IF ( LSAME( TRANA, 'N' ) ) THEN
CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO,
$ A(2,1), LDA )
DO 50 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( A(I,J), J = 1,N ), ( G(I,J), J = 1,N )
50 CONTINUE
ELSE
CALL DLASET( 'Upper', N-1, N-1, ZERO, ZERO,
$ A(1,2), LDA )
DO 60 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( A(J,I), J = 1,N ), ( G(I,J), J = 1,N )
60 CONTINUE
END IF
IF ( LSAME( TRANB, 'N' ) ) THEN
IF ( N.GT.1 ) THEN
CALL DLASET( 'Upper', N-2, N-2, ZERO, ZERO,
$ B(1,3), LDB )
END IF
DO 70 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( Q(I,J), J = 1,N ), ( B(I,J), J = 1,N )
70 CONTINUE
ELSE
IF ( N.GT.1 ) THEN
CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO,
$ B(3,1), LDB )
END IF
DO 80 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( Q(I,J), J = 1,N ), ( B(J,I), J = 1,N )
80 CONTINUE
END IF
C
IF ( LSAME( TRANB, 'N' ) ) THEN
TRANV1 = 'T'
ELSE
TRANV1 = 'N'
END IF
CALL DGEMM( TRANA, TRANV1, N, N, N, ONE, RES, LDRES,
$ V1, LDV1, ZERO, RES(1,4*N+1), LDRES )
CALL DGEMM( 'No Transpose', 'Transpose', N, N, N,
$ -ONE, RES(1,2*N+1), LDRES, V2, LDV2, ONE,
$ RES(1,4*N+1), LDRES )
CALL DGEMM( TRANA, TRANA, N, N, N, -ONE, U1, LDU1,
$ A, LDA, ONE, RES(1,4*N+1), LDRES )
TEMP = DLANGE( 'Frobenius', N, N, RES(1,4*N+1),
$ LDRES, DWORK )
CALL DGEMM( TRANA, 'Transpose', N, N, N, ONE, RES,
$ LDRES, V2, LDV2, ZERO, RES(1,4*N+1),
$ LDRES )
CALL DGEMM( 'No Transpose', TRANV1, N, N, N, ONE,
$ RES(1,2*N+1), LDRES, V1, LDV1, ONE,
$ RES(1,4*N+1), LDRES )
CALL DGEMM( TRANA, 'No Transpose', N, N, N, -ONE,
$ U1, LDU1, G, LDG, ONE, RES(1,4*N+1),
$ LDRES )
CALL DGEMM( 'No Transpose', TRANB, N, N, N, -ONE,
$ U2, LDU2, B, LDB, ONE, RES(1,4*N+1),
$ LDRES )
TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N,
$ RES(1,4*N+1), LDRES, DWORK ) )
CALL DGEMM( 'No Transpose', TRANV1, N, N, N, ONE,
$ RES(1,3*N+1), LDRES, V1, LDV1, ZERO,
$ RES(1,4*N+1), LDRES )
CALL DGEMM( TRANB, 'Transpose', N, N, N, -ONE,
$ RES(1,N+1), LDRES, V2, LDV2, ONE,
$ RES(1,4*N+1), LDRES )
CALL DGEMM( 'No Transpose', TRANA, N, N, N, ONE,
$ U2, LDU2, A, LDA, ONE, RES(1,4*N+1),
$ LDRES )
TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N,
$ RES(1,4*N+1), LDRES, DWORK ) )
CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, ONE,
$ RES(1,3*N+1), LDRES, V2, LDV2, ZERO,
$ RES(1,4*N+1), LDRES )
CALL DGEMM( TRANB, TRANV1, N, N, N, ONE, RES(1,N+1),
$ LDRES, V1, LDV1, ONE, RES(1,4*N+1),
$ LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N,
$ ONE, U2, LDU2, G, LDG, ONE, RES(1,4*N+1),
$ LDRES )
CALL DGEMM( TRANA, TRANB, N, N, N, -ONE, U1, LDU1,
$ B, LDB, ONE, RES(1,4*N+1), LDRES )
TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N,
$ RES(1,4*N+1), LDRES, DWORK ) )
WRITE ( NOUT, FMT = 99990 ) TEMP
C
WRITE ( NOUT, FMT = 99994 )
IF ( LSAME( TRANB, 'N' ) ) THEN
DO 90 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( V1(J,I), J = 1,N ), ( V2(J,I), J = 1,N )
90 CONTINUE
DO 100 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( -V2(J,I), J = 1,N ), ( V1(J,I), J = 1,N )
100 CONTINUE
WRITE ( NOUT, FMT = 99989 ) MA02JD( .TRUE.,
$ .TRUE., N, V1, LDV1, V2, LDV2,
$ RES(1,4*N+1), LDRES )
ELSE
DO 110 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( V1(I,J), J = 1,N ), ( V2(J,I), J = 1,N )
110 CONTINUE
DO 120 I = 1, N
WRITE (NOUT, FMT = 99993)
$ ( -V2(J,I), J = 1,N ), ( V1(I,J), J = 1,N )
120 CONTINUE
WRITE ( NOUT, FMT = 99989 ) MA02JD( .FALSE.,
$ .TRUE., N, V1, LDV1, V2, LDV2,
$ RES(1,4*N+1), LDRES )
END IF
END IF
END IF
END IF
END IF
*
STOP
*
99999 FORMAT (' MB04TS EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB04TS = ',I2)
99997 FORMAT (' INFO on exit from MB04WR = ',I2)
99996 FORMAT (' The orthogonal symplectic factor U is ')
99995 FORMAT (/' The factor R is ')
99994 FORMAT (/' The orthogonal symplectic factor V is ')
99993 FORMAT (20(1X,F9.4))
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (/' Orthogonality of U: || U^T U - I ||_F = ',G7.2)
99990 FORMAT (/' Residual: || H*V - U*R ||_F = ',G7.2)
99989 FORMAT (/' Orthogonality of V: || V^T V - I ||_F = ',G7.2)
END
</PRE>
<B>Program Data</B>
<PRE>
MB04TB EXAMPLE PROGRAM DATA
5 N N
0.4643 0.3655 0.6853 0.5090 0.3718
0.3688 0.6460 0.4227 0.6798 0.5135
0.7458 0.5043 0.9419 0.9717 0.9990
0.7140 0.4941 0.7802 0.5272 0.1220
0.7418 0.0339 0.7441 0.0436 0.6564
-0.4643 -0.3688 -0.7458 -0.7140 -0.7418
-0.3655 -0.6460 -0.5043 -0.4941 -0.0339
-0.6853 -0.4227 -0.9419 -0.7802 -0.7441
-0.5090 -0.6798 -0.9717 -0.5272 -0.0436
-0.3718 -0.5135 -0.9990 -0.1220 -0.6564
0.7933 1.5765 1.0711 1.0794 0.8481
1.5765 0.1167 1.5685 0.8756 0.5037
1.0711 1.5685 0.9902 0.3858 0.2109
1.0794 0.8756 0.3858 1.8834 1.4338
0.8481 0.5037 0.2109 1.4338 0.1439
1.0786 1.5264 1.1721 1.5343 0.4756
1.5264 0.8644 0.6872 1.1379 0.6499
1.1721 0.6872 1.5194 1.1197 1.0158
1.5343 1.1379 1.1197 0.6612 0.2004
0.4756 0.6499 1.0158 0.2004 1.2188
</PRE>
<B>Program Results</B>
<PRE>
MB04TS EXAMPLE PROGRAM RESULTS
The orthogonal symplectic factor U is
-0.1513 0.0756 -0.0027 0.1694 -0.2999 0.3515 -0.4843 0.6545 -0.1995 -0.1627
-0.1202 0.2320 0.1662 -0.2835 -0.0508 0.4975 0.3319 -0.2686 -0.4186 -0.4649
-0.2431 0.2724 0.3439 0.3954 0.0236 0.3820 -0.2863 -0.4324 0.3706 0.1984
-0.2327 -0.1509 -0.3710 -0.1240 -0.0393 0.5000 0.3659 0.1429 0.0493 0.6015
-0.2418 -0.2928 -0.0836 -0.5549 0.4824 0.1550 -0.4441 -0.0396 0.2376 -0.1702
-0.3515 0.4843 -0.6545 0.1995 0.1627 -0.1513 0.0756 -0.0027 0.1694 -0.2999
-0.4975 -0.3319 0.2686 0.4186 0.4649 -0.1202 0.2320 0.1662 -0.2835 -0.0508
-0.3820 0.2863 0.4324 -0.3706 -0.1984 -0.2431 0.2724 0.3439 0.3954 0.0236
-0.5000 -0.3659 -0.1429 -0.0493 -0.6015 -0.2327 -0.1509 -0.3710 -0.1240 -0.0393
-0.1550 0.4441 0.0396 -0.2376 0.1702 -0.2418 -0.2928 -0.0836 -0.5549 0.4824
Orthogonality of U: || U^T U - I ||_F = .24E-14
The factor R is
-3.0684 4.6724 -0.2613 -0.1996 0.0208 -0.1071 -0.1355 -0.1400 0.4652 -0.5032
0.0000 -1.8037 -0.0301 -0.1137 0.1771 0.0277 0.3929 0.5424 0.5220 -0.4843
0.0000 0.0000 -0.7617 -0.1874 0.2557 0.1244 -0.0012 0.4091 0.5123 -0.3522
0.0000 0.0000 0.0000 -0.6931 -0.4293 -0.3718 0.1542 -0.3635 0.0336 -0.9832
0.0000 0.0000 0.0000 0.0000 0.6469 0.2074 0.0266 0.2028 0.1995 0.2517
0.0000 0.0000 0.0000 0.0000 0.0000 2.6325 -4.7377 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -0.2702 0.9347 -1.1210 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -0.3219 -0.5394 0.1748 -0.4788 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -0.1431 -0.1021 0.4974 -0.3565 -0.6402
0.0000 0.0000 0.0000 0.0000 0.0000 -0.1622 -0.2368 0.6126 -0.7369 0.6915
Residual: || H*V - U*R ||_F = .87E-14
The orthogonal symplectic factor V is
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 -0.4740 0.6013 -0.2299 -0.4282 0.0000 0.0061 -0.1732 0.3134 0.2220
0.0000 -0.5553 -0.2623 0.6622 -0.3042 0.0000 -0.0382 0.2453 -0.1662 0.0509
0.0000 -0.5563 0.0322 -0.1431 0.4461 0.0000 -0.0665 -0.4132 -0.3100 -0.4457
0.0000 -0.3872 -0.4022 -0.4194 0.3541 0.0000 -0.0406 0.3820 0.3006 0.3861
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0061 0.1732 -0.3134 -0.2220 0.0000 -0.4740 0.6013 -0.2299 -0.4282
0.0000 0.0382 -0.2453 0.1662 -0.0509 0.0000 -0.5553 -0.2623 0.6622 -0.3042
0.0000 0.0665 0.4132 0.3100 0.4457 0.0000 -0.5563 0.0322 -0.1431 0.4461
0.0000 0.0406 -0.3820 -0.3006 -0.3861 0.0000 -0.3872 -0.4022 -0.4194 0.3541
Orthogonality of V: || V^T V - I ||_F = .14E-14
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|